
FRANZIS

SAMMELBAND zur professionellen Schaltungstechnik

Band 1 bis 7

Über 2.800 erprobte Schaltungen aus der Elektronik

Bibliografische Information der Deutschen Bibliothek

Die Deutsche Bibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte Daten sind im Internet über http://dnb.ddb.de abrufbar.

Alle Angaben in diesem Buch wurden vom Autor mit größter Sorgfalt erarbeitet bzw. zusammengestellt und unter Einschaltung wirksamer Kontrollmaßnahmen reproduziert. Trotzdem sind Fehler nicht ganz auszuschließen. Der Verlag und der Autor sehen sich deshalb gezwungen, darauf hinzuweisen, dass sie weder eine Garantie noch die juristische Verantwortung oder irgendeine Haftung für Folgen, die auf fehlerhafte Angaben zurückgehen, übernehmen können. Für die Mitteilung etwaiger Fehler sind Verlag und Autor jederzeit dankbar. Internetadressen oder Versionsnummern stellen den bei Redaktionsschluss verfügbaren Informationsstand dar. Verlag und Autor übernehmen keinerlei Verantwortung oder Haftung für Veränderungen, die sich aus nicht von ihnen zu vertretenden Umständen ergeben. Evtl. beigefügte oder zum Download angebotene Dateien und Informationen dienen ausschließlich der nicht gewerblichen Nutzung. Eine gewerbliche Nutzung ist nur mit Zustimmung des Lizenzinhabers möglich.

© 2018 Franzis Verlag GmbH, 85540 Haar bei München

Alle Rechte vorbehalten, auch die der fotomechanischen Wiedergabe und der Speicherung in elektronischen Medien. Das Erstellen und Verbreiten von Kopien auf Papier, auf Datenträgern oder im Internet, insbesondere als PDF, ist nur mit ausdrücklicher Genehmigung des Verlags gestattet und wird widrigenfalls strafrechtlich verfolgt.

Die meisten Produktbezeichnungen von Hard- und Software sowie Firmennamen und Firmenlogos, die in diesem Werk genannt werden, sind in der Regel gleichzeitig auch eingetragene Warenzeichen und sollten als solche betrachtet werden. Der Verlag folgt bei den Produktbezeichnungen im Wesentlichen den Schreibweisen der Hersteller.

Autor: Frank Sichla

INHALTSÜBERSICHT

Band 1: 300 neue professionelle Schaltungen	PDF-	·S. 4
Band 2: 301 neue professionelle Schaltungen	PDF-S.	. 395
Band 3: 302 neue professionelle Schaltungen	PDF-S.	. 788
Band 4: Standardschaltungen der Digital- und Analogtechnik	PDF-S.	1264
Band 5: Schaltungssammlung LEDs, LCDs und Lasertechnik	PDF-S. 1	1572
Band 6: Schaltungssammlung Mikrocontroller und USB	PDF-S. 1	1922
Band 7: Schaltungssammlung Mess- und Prüftechnik	PDF-S. 2	2299

Band 1: 300 neue professionelle Schaltungen

Applikationsschaltungen für Praxis, Labor und Studium

Vorwort

Auch dieser Band "Professionelle Schaltungstechnik" ist kein Buch für Theoretiker, sondern eins für Praktiker, die für einen bestimmten Anwendungsfall eine Schaltung suchen, die sich schnell und mit wenig Aufwand realisieren lässt.

Da es sich in der Regel um einfache Systeme handelt, wurde bewusst auf einen alle Einzelheiten erklärenden Begleittext verzichtet. Der geübte Praktiker dürfte durchaus in der Lage sein, die Funktion zu durchschauen. Es wird also nur das beschrieben und erklärt, was unbedingt nötig ist, um mit der jeweiligen Schaltung arbeiten zu können.

Es werden nur moderne und hochwertige Bauelemente eingesetzt, deren Beschaffung nicht so schwierig ist, wie man vielleicht zunächst annehmen mag. Die Standardbauteile können Sie bei jedem Elektronikhändler bekommen. Die MOS-Bausteine bekommen Sie in reicher Auswahl, z. B. bei Reichelt-Elektronik, Postfach 10 40, 26358 Wilhelmshaven. Spezial-ICs, MOS-Transistoren, Optohalbleiter sowie einige der eingesetzten Relais können Sie zum Beispiel über die Firma Conrad-Electronic GmbH, Klaus-Conrad-Straße 1, 92240 Hirschau, beziehen. Bezüglich der SDS-Relais wenden Sie sich bitte an die Firma NAIS/SDS-Matsushita Automation Controlls, Deutschland GmbH, Rudolf-Diesel-Ring 2, 83607 Holz-kirchen. Wenn Sie bei diesem Hersteller direkt kaufen wollen, bedenken Sie bitte, dass Sie Mindestmengen abnehmen müssen.

Viele Bauelemente können Sie auch über die Distributoren der Hersteller oder deren Halbleiter-Service beziehen. Hier schaffen Sie mit einigen Telefonaten Klarheit. Auch in den Katalogen vieler Versandhändler findet sich so manches interessante Bauelement! Zum Schluss sei noch erklärt, warum das Buch keine Platinen-Layouts enthält.

Erstens würde der Anwender damit auf eine bestimmte Form und Größe der Leiterplatte festgelegt, was der Erfahrung nach absoluter Unsinn ist, denn dafür dann ein passendes Gehäuse zu finden ist fast unmöglich und endet dann meist in einer abenteuerlichen Improvisation.

Zweitens ist der Anwender gezwungen, sich die vorgegebenen Bauteilegrößen in Bezug auf Widerstände und Kondensatoren zu beschaffen. Das kann durchaus Zeit, Geld und Mühe kosten.

Drittens ist der Anwender gezwungen, sich die vorgesehenen Relais zu besorgen. Selbst wenn man gleichwertige oder gar bessere Relais zur Verfügung hat, kann man diese dann meist nicht anwenden. Die richtige Reihenfolge bei der Erstellung eines ordentlichen Gerätes sieht so aus:

Material für die Schaltung zusammenstellen.

Passendes Gehäuse beschaffen.

Platine für diesen Gehäusetyp anfertigen.

Bestücken und einbauen.

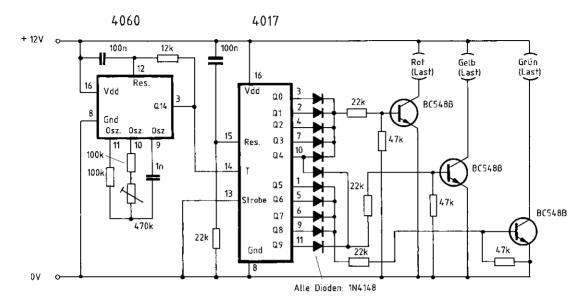
Übrigens, viele Schaltungen sind so klein und einfach, dass man sie auf einem Stück Lochrasterplatte aufbauen kann.

1	Emrache Ampeisteuerung	13
2	Automatische Hausnummernbeleuchtung	
3	Mittels Drucksensor gesteuerter Tonfrequenzgenerator	18
4	Druckabhängiger Schalter	
5	Alarmgeber mit Drucksensor	
6	Selbsthaltender Wechselschalter	21
7	Zeitgeber mit getrennt einstellbarer Anzug- und Abfallverzögerung und optischer	
	Betriebsanzeige	22
8	Hellschalter als Alarmgeber	24
9	Rotlicht-Kontrolleur	25
10	Programm-Ende-Melder für Waschmaschinen mit Drehwahlschalter	26
11	Zündflammenüberwachung mit Alarm für Kombithermen (Gas-Etagenheizung)	28
12	Schaltzusatz für Quarz- und Funkuhren	30
13	Signaltongenerator für Programm-Ende-Melder	32
14	Mini-Netzteil	33
15	Pulsierende LED	34
16	Verzögerter Schalter	35
17	Zeitgeber	36
18	Verbesserter Zeitgeber mit UJT	
19	Wechselblinker mit "Vibrato"	38
20	Taktoszillator mit Optokoppler als Ausgangsstufe	
21	Doppellauflicht	
22	Zuverlässiger Hochlast-Stromstoßschalter mit Thyristor-Flip-Flop	42
23	Flexibler Zeitschalter mit Zeitwahl per Starttaster	44
24	Baustellenblitzer	
25	Selbsthaltender, zeitgesteuerter Signalgeber	
26	Akustischer Melder mit Tonhöhen- und Laufzeitprogrammierung	49
27	"Piepomat" für Nostalgiker	50
28	Akustischer Signalgeber, Typ "Ohrenquäler"	52
29	Verpolungsschutzschaltung	53
30	Automatikschalter von Netzteil auf Batterie	54
31	Weich einschaltender Halogen-Timer mit Abschaltvorwarnung	56
32	Optischer Türmelder	58
33	Kleinlampe mit digitaler Dimmung	60
34	Hochempfindlicher Schaltverstärker mit Zeitfunktion	62

35	Stromsparender Reflexschalter mit einstellbarer Ausgangsimpulsbreite	
36	"Supereinfacher" verzögerter Schalter	
37	Verzögerter Einschalter mit Halbleiter-Relais	65
38	Toggle-Zeitgeber und Flip-Flop mit XR2240	66
39	Notlicht bei Lampenausfall	68
40	Impulsspeicher	69
41	Lichtgesteuerter Zeitschalter	70
42	Fotoelektrischer Fernschalter	72
43	Taschenlampen-Fernsteuerung	74
44	Blitzblinker	75
45	Dunkelschalter	76
46	Hochspannungs-LED	77
47	Multivibrator mit verzögert durchschaltenden Ausgängen	78
48	Verzögert durchschaltender Multivibrator aus Schmitt-Triggern	79
49	Batterieversorgter "Multivibrator" bzw. Messstellenumschalter	80
50	Impulsgesteuerter Alarmgeber mit Laufzeitbegrenzung	
51	Wasser-Melder	82
52	4060 als steuerbarer Zeitgeber	83
53	"Leerlauf"-Abschalter für Fernsehgerät etc.	84
54	Steuern von 24 Volt-Relais an 12 Volt Betriebsspannung	
55	"One-Shot"-Relais	
56	Einschaltzeitbegrenzer	88
57	Stromverbrauchsanzeige	89
58	Ein-Transistor-Taktgenerator	90
59	Signalgeber mit zeitlich begrenzter Laufzeit	91
50	Relais als Signaltongeber	92
51	Reservelampe	93
52	Hochspannungspulser	94
53	Zeitgeber für Akkubetrieb	95
54	NE555 – "digitalisiert"	96
55	ICM7555 als digitalisierter Toggle-Timer	98
56	Bewegungs-Detektor	99
57	Klein-Netzteil für Bewegungs-Detektor	00
58	1 6	00
59	Elektronischer Türklopfer, Typ "Hammerwerk"	01
70	Stromstoßschalter	02
71	Alarm-Melder mit Leistungsschalter	03
72	Optischer und akustischer Melder mit Relais-Schaltstufe 1	04
73	Lichtzeilensteuerung	05
74	Sirenenschaltung	
75	Akustischer Melder mit Selbsthaltung 1	06
76	Warntongeber 1	07

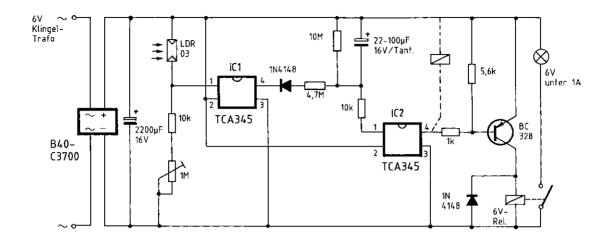
77	555 im Zyklenbetrieb	108
78	Fotoelektrisch kontrollierter Zeitgeber	109
79	High-Tech-Dämmerungsblinker	110
80	Manuell getriggerter Nachbrenner für Autoscheinwerfer	111
81	Nachbrenner für Autoscheinwerfer	112
82	Handgestarteter Nachbrenner ohne Ruhestromaufnahme	114
83	ICM7555-Timer mit ungewöhnlicher Beschaltung	115
84	Zeitschalter für Batteriebetrieb	116
85	Schaltverstärker für Bimetall-Blinklampen	117
86	Zeitgeber für professionelle Anwendungen	118
87	Warnlampen-Funktionskontrolle	120
88	Bewegungsmelder	121
89	Automatisches Türsignal	122
90	Power-Flip-Flop	123
91	Entweder-Oder-Leistungsschalter	124
92	"Hauptlast hat Vorrang" Schalter	125
93	Lastvorrangschalter mit MOS-Fet	126
94	"Nur so"-Blinker	127
95	Mit Hallelement geschaltete Steckdose	128
96	Mit Hallschalter gesteuerte Steckdose mit bistabilem Relais	129
97	Hochleistungswahlschalter 1 aus 4 (Tastenaggregat)	130
98	4-Kanal-Wahlschalter	132
99	Vereinfachter Tastwahlschalter	133
100	3-fach Lampenwahlschalter	134
101	Fenster/Heizkörper-Koordinator	136
102	Weichblinker für Alarm- und Meldeanwendungen	137
103	Lichteffektschaltung	138
104	Ablaufsteuerung	139
105	Optischer Bewegungsmelder	140
106	Einfacher Bewegungsmelder	
107	Stromstoß-Relais in Sparschaltung	
108	Stromstoß-Relais mit Ruheanzeige per LED	
109	Weichschalter für Halogenlampen	
110		
	Verzögerter Einschalter	
112	555-Timer mit Nachtriggerfunktion	147
113	66	148
114	C	149
115	1	150
116		151
117	Flipflop	
118	Verzögerter Mehrfachschalter	153

119	Wahlschalter 1 aus 4	154
120	Dreifachschalter	156
121	Sicherungs-Defekt-Anzeige	157
122	Elektronischer Windrichtungsanzeiger	158
123	Acht Klingeln an einer Leitung/Kodierte Hausklingelanlage	160
124	Zeitbezogenes Herunterstufen der Helligkeit von Halogenlampen	163
125	Zeitlicht mit helligkeitsvermindertem Nachlauf	164
126	Nachlaufendes Zeitlicht	165
127	Automatischer Abschalter für Fernsehgerät, Radio etc	166
128	Lichtschalter mit zeitbezogenem Herunterstufen der Lampenhelligkeit	167
129	IR-Fernsteuerempfänger mit digitaler Schaltanzeige	168
130	IR-Handsender	
131	Ein Leuchtsegment fährt Karussell	170
132	Analog-Blink-Lichtband	171
133	Analoges Lichtband, abbauend	172
134	Zeitgeber mit Count-Down-Anzeige	173
135	5-facher, serieller Lastschalter	174
136	Dämmerungsdimmer	175
137	Nachtriggerbarer Zeitgeber mit Abschaltvorwarnung	176
138.1	Flurlichtzeitschalter mit Abdimmeffekt zur Abschaltwarnung	177
138.2	Steuermodul	179
139	Einfacher Signalgeber	181
140	Nullspannungs-Lichtschalter	182
141	Einfachst-Netzblinker	183
142	ICM7555 als Generator mit getrennt einstellbarer Frequenz und Impulsbreite	184
143	IR-Reflexschalter	185
144	IR-Reflex-Zeitschalter	
145	Türklingel "Krawallopieps"	
146	Umschalttransistor	190
147	Kontrollschaltung	191
148	Parallel-Zeitschalter	192
149	Nachlaufzeitschalter	194
150	Einfache Lichtbandsteuerung	196
151	Lichteffektschaltung mit Binärzähler	
152	Haustür-Zeitlicht	198
153	IR-Sender	199
154	IR-Empfänger	200
155	Zeitschalter für IR-Empfänger	201
156	Universalempfänger für IR-Fernsteuerung	202
157	Automatik-Türgong mit Passiv-IR-Detektor	203
158	Automatisches Nachtlicht	204
159	LED-Blitzer	205


160	wechselspannungsfernsteuerung	. 206
161	Netz-Sicherungs-Überwachung	
162	Togglebarer Zeitschalter	
163	Kurzzeitgeber ohne Ruhestromaufnahme	. 210
164	Drahtgebundene Steuerung von zwei Netzlasten	
165	Doppelklingel	. 212
166	Dämmerungsschalter mit Hochlastrelais	. 214
167	Timer "ohne" Ruhestrom	. 215
168	Pendellichtbandsteuerung	. 216
169	Sensorschalter	. 218
170	Zeitschalter mit Sensorsteuerung	. 219
171	Lauflicht mit Arbeitsmoduseinstellung	. 220
172	Doppelpendellauflicht	. 222
173	8-Kanal-Pendellauflicht	. 224
174	Steuerteil für 10-Kanal-Lauflicht	. 225
175	Signalgenerator	. 226
176	Zeitgesteuerte Sirenenschaltung	. 227
177	Besuchermelder	. 228
178	Verzögerter Doppelschalter	. 230
179	Serieller "Halogen-Schalter"	. 232
180	8-Minuten-Timer mit Count-Down und Nachtriggerfunktion	. 233
181	Steuerschaltung für 16 mm Duo-LED	. 235
182	Einschaltstrombegrenzer für 6 Volt Halogenlampe	. 236
183	Einschaltstrombegrenzer für Halogenlampe 12 V/20 W	. 237
184	Weichschalter mit Abschaltverzögerung für Halogenlampe	. 238
185	Automatischer Serienschalter	. 239
186	Serieller Schalter mit Zeitfunktion	. 240
187	Ministromversorgung ohne Trafo	. 242
188	Halogen-Dimmer	. 243
189	"Weichschalter" für 230-Volt Glühbirnen	. 244
190	Lichtband mit auf- und abbauendes Lauflicht	. 245
191	Einfacher Kurzzeitschalter für hohe Last	. 246
192	Verbesserter Kurzzeitgeber mit Diac	. 247
193	Überhitzungsschutz für Kleinst-Transformatoren	. 248
194	Und hier die "Toto-Zahlen"	. 249
195	Digitaler Zähler	. 250
196	Supereinfacher, zuverlässiger Zeitgeber	. 251
197	Schalteraggregat	. 252
198	Helligkeitsabhängiger Tongenerator	
199	Automatische Helligkeitsanpassung einer 20 Watt Halogenbirn:	. 256
200	Reflex-Taste:	. 257
201	Kontrollschaltung mit Reflexkoppler	. 258

202	Wechselblinker mit UJT und bistabilem Relais	260
203	Rechts-Links-Schieberegister mit Ausgangsselektion	261
204	Digitaler Stufendimmer für Halogenlampe mit Rechts-Links-Schieberegister	262
205	4-stufiger Dimmer für Glühbirnen von 40–100 Watt mit Rechts-Links-Schiebe-	
	register 40194	264
206	Lampenschieber	266
207	Notlichtumschalter	267
208	Automatische Reservelampe	268
209	Phasenverpolungsschutzschaltung	271
210	Selbsthaltendes Halbleiter-Relais	270
211	Doppelschalter	273
212	Spannungsabhängiger Schalter	274
213	Blinkende Glimmlampe	275
214	Verzögerter Einschalter mit Count-Down	276
215.	1Mini-Fernsteuersender	278
215.	2Fernsteuersender, Variante 2	279
216	Mini-Fernsteuerempfänger	280
217	Haustürschlüssel-Empfänger	281
218	IR-Reflexschalter	282
219	Stromversorgung für IR-Reflexschalter	283
220	Reflexlichtschranke	284
221	Richtungsabhängige Lichtschranke	285
222	2. Variante der richtungsabhängigen Lichtschranke	287
223	Postmelder	288
224	Briefkasten-Kontrolleur	289
225	Hochleistungs-Blitzblinker	290
226	Impulsschalter für Akku-Lampe	291
227	230 V-Blink-LED	
228	Leistungs-Zeitschalter mit Diac und "Eltako"	293
229	Unterspannungsanzeige für Batteriegeräte	
230	Spannungsregler von 11–14,5 auf 9 Volt	295
231	Zeitschalter mit Spannungsdetektor IC ICL8212	296
232	Solar-Laderegler einfachster Bauart	
233	Grenzspannungsschalter	298
234	Kontaktloser Schalter "Marke-Eigenbau"	299
235	Türüberwachung mit Hallschalter und Piezo	
236	"Schubladen-Kontrolleur"	301
237	Kontaktlose Taste mit Hallschalter	302
238	Sicherheitsschloss, Typ: "Russisch-Roulette"	303
239	Verzögerter Einschalter	305
240	Sicherungsüberwachung	306
241	Wechselschalter für mit Leuchtstoffröhren bestückte Lichtreklame-Displays	307

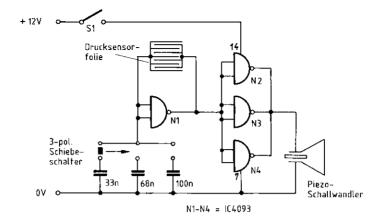
242	Verzögerter Einschalter mit extrem langer Vorlaufzeit	308
243	5-Minuten-Timer	309
244	30-Sekunden-Einschaltverzögerung	311
245	Verzögerter Einschalter mit 4060	312
246	Verzögerter Einschalter	313
247	Zeitschaltverstärker für Quarz- bzw. Funkuhren	315
248	Schaltmodul für Funkuhr	316
249	Langzeitverzögerer	318
250.1	Stunden-Timer mit Count-down und Abschaltvorwarnung	319
250.2	Stunden-Timer mit Count-down und Abschaltvorwarnung	320
251	Betriebskontrolle für Lötkolben	321
252	Alarm/Meldeblinker	322
253	Netzbetrieb von Niedrigspannungslampen	323
254	Automatisches Nachtlicht	324
255	Dämmerungsschalter, Version 2	325
256	Selektiver Schalter	326
257	Entweder-Oder-Schalter	327
258	Kurzzeitbeleuchter	
259	Netz-Lampenausfallmelder	
260	Nachtlicht für Flure, Gänge, Treppen etc	330
261	Einschaltfernmelder mit Fernabschaltmöglichkeit	331
262	Richtungsempfindliche Lichtschranke	
263	Akustische Sicherungsüberwachung	
264	Sensorschalter für Batteriebetrieb	335
265.1	16-Kanal-Lauflicht mit Ausgangsprogrammierung	336
265.2	16-Kanal-Lauflicht mit Ausgangsprogrammierung	337
266	Folgeschalter/Kontrollschalter	338
267	Power-Flip-Flop	339
268	Automatischer Zweitschalter	340
269	Zeit -und Spannungsbegrenztes Einschalten von Messgeräten	341
270	Dämmerungsschalter mit fünf seriell gesteuerten Ausgängen	342
271	Dämmerungsschalter mit fünf Ausgängen	343
272	Spannungsgesteuerter Schalter/Solarladeregler	344
273	Lichtgesteuerter Dreistufenschalter	345
274	Grenzspannungsschalter/Tiefentladeschutzschalter	346
275	10-Minuten-Timer mit Toggle-Funktion und Count-Down	
276.1	Drahtgebundene Fernsteuerung mit Spannungsstufenauswertung	350
276.2	Drahtgebundene Fernsteuerung mit Spannungsstufenauswertung	351
	Drahtgebundene Fernsteuerung mit Spannungsstufenauswertung	
	Drahtgebundene Fernsteuerung mit Spannungsstufenauswertung	
277	9-Kanal-Drahtfernsteuerung	
278	Unterbrechender Umschalter	


2/9	Unterbrechender Umschalter mit N-Kanal-Ausgangstransistoren	338
280	BIP-MOS-Schalter selbstgemacht	359
281	Türklingel "Dudel-Deluxe" mit Lichtspiel	360
282	Selbstleitender MOS-Fet vom Typ BSS229 als Spannungsregler	361
283	12-Volt-Relais an 24 Volt über Fet-Spannungsregler	362
284	Konstantstromquelle für Low-Current-LEDs	363
285	Konstantstromquelle für 12-Volt Relais	364
286	Ansteuerung bistabiler Relais über Spezial-Optokoppler	365
287	Automatische Leuchtstärkeregelung mit OPL100	366
288	1 1	
289	PC921 steuert BUZ11	368
290	Elektronischer Schlüssel	369
291	Elektronisches Schloss	370
292	Thyristor-Flip-Flop	372
293	Impulsspeicher	373
294	IR-Fernsteuerempfänger mit Störsignalunterdrückung	374
295		
296	Stromversorgung für IR-Fernsteuerempfänger	376
297	IR-Fernsteuerempfänger mit Zeitfunktion	377
298	IR-Fernsteuerempfänger mit erhöhter Zuverlässigkeit	378
299	IR Fernsteuerempfänger mit Stromstoß-Relais	379
300	Drahtgebundene Fernsteuerung/Sender	380
301	Erster Empfänger der drahtgebundenen Fernsteuerung	381
302	Zweiter Empfänger der drahtgebundenen Fernsteuerung und Stromversorgung	382
303	Mini-Dimmer für Halogen-Lampen	383
304	15 kHz-Start-Stop-Oszillator mit Power-Ausgang	384
305	Zeitbezogenes Herunterstufen der Lampenhelligkeit	385
306	Netzausfallerinnerung	386
Anh	nang	387

1 Einfache Ampelsteuerung

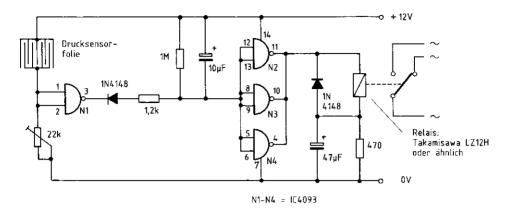
Diese Schaltung, die für Modellbauanwendungen entwickelt wurde, simuliert über 3 Leuchtdioden oder Kleinglühbirnen, ziemlich perfekt eine Verkehrsampel. Die eigentliche Ablaufsteuerung bildet der 4017, mit der die Ausgänge entkoppelnden Diodenmatrix und den drei Schalttransistoren. Der Teiler-Baustein 4060 dient hier als einstellbarer Taktgeber für den 4017. Wenn Sie Low-Current-LEDs einsetzen, ist die Stromaufnahme so niedrig, dass sogar Batteriespeisung in Frage kommt. Sie können aber auch mittels Relais oder Halbleiter-Relais Glühbirnen ansteuern.

2 Automatische Hausnummernbeleuchtung

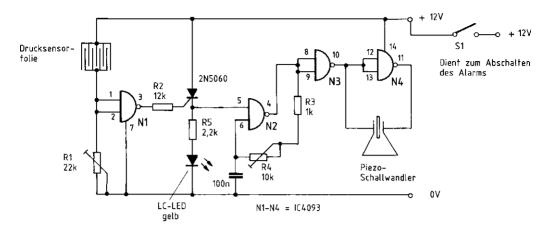


Diese kleine Schaltung ermöglicht es Ihnen, sich eine beleuchtete Hausnummer "aufzubauen". Das ist durchaus kein unnötiger Luxus, sondern sehr nützlich. Das Ein- und Ausschalten der Beleuchtung geschieht hier selbstverständlich automatisch über folgende Funktionen: IC1 bildet zusammen mit dem LDR und den Widerständen einen einstellbaren Dämmerungsschalter. Solange ausreichend Licht auf den LDR fällt, ist er niederohmig und der Eingang Pin 1 des IC1 liegt an positivem Speisepotenzial. Somit ist der Ausgang Pin 4 hochohmig. Bei Einbrechen der Dunkelheit steigt der Widerstand des LDR langsam soweit, dass irgendwann die Ansprechschwelle des TCA345 unterschritten wird und sein Eingang nun "negativ" wird. Mit dem Trimmer können Sie diesen Zeitpunkt beeinflussen. Jetzt schaltet der Ausgang Pin 4 durch und es gelangt negatives Potenzial über die Diode und den 4,7 MOhm-Widerstand auf den Tantal-Elko und lädt ihn langsam auf. Wenn Sie einen 22 µF-Elko einsetzen, dann ist dieser nach etwa 2 Minuten soweit aufgeladen, dass die Schaltschwelle des zweiten TCA345 überschritten wird und nun über Ausgang Pin 4 der Transistor durchgeschaltet wird. Das Relais zieht an und die Glühbirne brennt. In der Morgendämmerung fällt nun wieder Licht auf den LDR, und wenn es hell genug ist, wird er wieder so niederohmig, dass der Eingang von IC1 wieder auf "Plus" liegt und somit der Ausgang sperrt. Da nun kein Ladeerhaltungsstrom mehr in den Elko fließt, wird seine Ladung über den 10 MOhm-Parallelwiderstand abgebaut. Auch jetzt wird noch etwa 2 Minuten die Schaltschwelle des TCA345 unterschritten, was zu seinem Abschalten führt. Nun sperrt auch der Transistor wieder und das Relais fällt ab, die Glühbirne geht aus. In diesem Zustand nimmt die gesamte Schaltung nur etwa 3 mA auf. Sicher werden Sie sich jetzt wie viele Leser fragen: Wozu die Ein- und Ausschaltverzögerung? Diese wurde ganz bewusst so lange gewählt, damit kurzzeitige Verdunkelungen des LDR, z. B. durch Wolken, nicht zum Ein- und Ausschalten der Beleuchtung führen. Ähnlich verhält es sich mit der Ausschaltverzögerung, die verhindert, dass vorbeifahrende Autos mit ihren Scheinwerfern die Beleuchtung abschalten. Wenn Ihnen die Verzögerung durch einen 22 µF-Elko zu gering ist, nehmen Sie einen von 33 μF oder 47 μF.

2 Automatische Hausnummernbeleuchtung (Fortsetzung)


Ein weiterer Punkt, der einige Leser erstaunen wird, ist der Einsatz eines Relais als Lastschalter, wo es doch scheinbar nahe liegt, die Glühbirne direkt mit einem Transistor zu steuern. Auch hier wurde mit Vorbedacht das Relais gewählt, weil es durchaus Vorteile bringt. Erstens sind Sie in der Wahl der Glühbirne viel freier und zweitens muss ein Relais nicht gekühlt werden. Wenn Sie ein empfindliches Relais einsetzen, dann können Sie es direkt über den Ausgangs-Pin 4 von IC2 steuern, und zwar so, wie strichliert gezeigt. Das Relais darf dann aber darauf keinen Fall mehr als 70 mA-Spulenstrom ziehen. Versorgen können Sie das gesamte System mit einem 6 Volt-Klingeltrafo, der etwa 1–1,5 A liefern können muss.

3 Mittels Drucksensor gesteuerter Tonfrequenzgenerator


Diese etwas eigentümlich anmutende Schaltung ist verblüffend und vielseitig einsetzbar. Die Generatorschaltung selbst ist altbekannt und wird deshalb hier nicht weiter erklärt. Das Besondere an dieser Schaltung ist der Drucksensor in Folienform, den Sie bei Fa. Conrad beziehen können. Diese Folie verändert ihren Eigenwiderstand unter Druck, und zwar von weit über 20 MOhm im unbelasteten Zustand, hin zu etwa 2 kOhm unter kräftigem Druck, z. B. mit dem Finger. Da dieser veränderliche Widerstand im Rückkopplungszweig des Generators liegt, führt das zu einer Veränderung der Ausgangsfrequenz, und zwar derart, dass die Frequenz immer höher wird bei steigendem Druck. Anstelle des Piezoschallwandlers können Sie natürlich auch einen MOS-Fet ansteuern und über diesen einen Lautsprecher. Diese Schaltung können Sie zum Beispiel als originelle Türklingel einsetzen, oder als Toneffektgenerator, auf Gewicht reagierenden Alarmgeber, oder denken Sie sich doch selber was aus!

4 Druckabhängiger Schalter

Diese Schaltung wurde entwickelt als Teil einer halbautomatischen Abfüllanlage. Der Foliendrucksensor ist dabei Teil einer Art "Wiegevorrichtung", auf die der zu füllende Behälter gestellt wird. Über ein Magnetventil wird nun z. B. Wasser in den Behälter gelassen. Ist ein bestimmtes Gewicht erreicht, ist der Widerstand der Drucksensorfolie also kleiner als der des Trimmerwiderstandes, dann kippt N1 und lädt den 10 uF-Elko. Die Gatter N2/N3/N4 schalten ebenfalls um und das Relais zieht an, was dazu führt, dass dem Magnetventil der Betriebsstrom entzogen wird und es somit sperrt. Damit nun der volle Behälter gegen einen leeren ausgetauscht werden kann, bleibt das Relais noch etwa 10 Sekunden angezogen, wofür der 10 µF-Elko sorgt. Wenn Sie den 1 MOhm-Widerstand durch einen Trimmer ersetzen, dann können Sie die Abfallverzögerung den jeweiligen Bedürfnissen anpassen. Wenn das Relais abfällt, dann bekommt das Magnetventil wieder Strom und öffnet. Zu der gesamten Anlage gehören natürlich noch verschiedene Sicherheitssysteme, zum Beispiel um ein Öffnen des Magnetventils zu verhindern, wenn kein Behälter auf dem Sensor steht. Die Ansprechschwelle der Schaltung lässt sich mit dem 22 kOhm-Trimmer innerhalb gewissen Grenzen beeinflussen. Noch einige Bemerkungen zu den Treibergattern und zum Relais: Die drei parallel geschalteten Gatter können zwar bei 12 V-Betriebsspannung rund 36 mA liefern, dennoch sollten Sie das Relais wie gezeigt in Sparschaltung betreiben um den Strom auf ein akzeptables Maß zu reduzieren. Der Anzugstrom des Relais liegt bei 30 mA, der Haltestrom bei rund 15 mA, und das auch nur für die Einschaltzeit, denn so bald das Relais abgefallen ist, geht die Stromaufnahme der Schaltung innerhalb von etwa 10 Sekunden auf Null. Ein Ein- und Ausschalter ist somit nicht zwingend nötig.

5 Alarmgeber mit Drucksensor

Dieses kleine Gerät wurde entwickelt, um zu verhindern, dass Ausstellungsstücke auf einer Messe entwendet werden. Dazu muss das zu sichernde Gerät auf den Foliensensor gestellt werden und die Betriebsspannung eingeschaltet werden. Mit R1 lässt sich die richtige Empfindlichkeit einstellen. Der Thyristor darf also nicht gezündet sein. Nimmt nun jemand den Gegenstand vom Sensor, dann wird dieser hochohmig und die Eingänge von Gatter 1 liegen über R1 an Null, was zum Umkippen seines Ausgangs führt. Jetzt bekommt der Thyristor positives Zündpotenzial und schaltet durch. Die LED leuchtet und ihr Strom hält den Thyristor durchgeschaltet. Damit wird auch Steuereingang 5 von Gatter N2 positiv und dieses arbeitet im Zusammenspiel mit R3/R4 und dem 100 nF-Kondensator als Tongenerator für den Piezoschallwandler, der über die Ausgänge der beiden Treibergatter N3 und N4 mit dem Signal beaufschlagt wird. Diese Art der Beschaltung bringt eine enorme Lautstärke, und sorgt so dafür, dass das Personal aufmerksam wird und nach dem Rechten sieht. Mit R4 lässt sich der Oszillator auf die Resonanzfrequenz des Piezos einstellen. Der Ton wird dann so schrill, dass alle Zahnprothesen in der Nähe schwingen. Dieser Effekt und ein missbilligender oder strafender Blick des Personals haben einen durchaus erzieherischen Wert. Apropos, auch wenn der Piezo kreischt, dass Brillengläser springen, die Stromaufnahme der Schaltung bleibt bei 10 mA.

Band 2: 301 neue professionelle Schaltungen

Applikationsschaltungen für Praxis, Labor und Studium

1.	Abtast-/Halte-Schaltungen (Sample And Hold)
1.1	Zwei Anstiegszeiten
1.2	Abtastverstärker
1.3	Verfolgen und Halten
1.4	256 8-Bit Abtasten/Speichern
1.5	Sample and Hold nichtinvertierend
1.6	Sample and Hold digital
1.7	Sample and Hold analog
1.8	Neutralisation im Bereich von +/-7,5 V
1.9	Sample and Hold nichtinvertierend
1.10	Zeitgesteuertes Abtasten der Anstiegsflanke
1.11	256 Pegel Hold
1.12	Verfolgen und Halten bis 4 kHz
1.13	Sample and Hold
1.14	15 V nur eine Versorgungsspannung
1.15	Sample and Hold mit FET-Operationsverstärker
1.16	Sample and Hold mit kleiner Drift
1.17	Schneller Sample and Hold
1.18	JFET Sample and Hold
1.19	Sample and Hold/Pulsbewerter
1.20	Driftreduzierung durch Rückkopplung
1.21	Abgeleitetes Abtasten der Anstiegsflanke
1.22	Sample and Hold invertierend
1.23	Ausschalten von Spannungsspitzen
1.24	Sample and Hold mit einstellbarem Offset
2.	Signalgenerator-Schaltungen 4
2.1	Geführter Generator
2.2	Kalibrierer für 25 kHz
2.3	455 kHz zum ZF-Abgleich 4
2.4	Universeller Test-Oszillator
2.5	Generator/Kalibrierer fürs Labor
2.6	Bandkanten-Markierer
2.7	Sinus/Cosinus-Oszillator

2.8	Schwingungsform-Synthesizer	
2.9	30-kHz-Markengenerator für 2 m FM	
2.10	Frequenz Normal	51
2.11	100-kHz-Quarz	
2.12	15 Hz bis 40 kHz in vier Bereichen	53
2.13	Präzisions-4,5-MHz-FM für die Fernseher-ZF	54
2.14	Radiofrequenzen in 6 Bereichen	55
2.15	30 Hz bis 100 kHz	
2.16	Empfänger-Kalibrierer im 2-m-Band	57
2.17	Abgleich-Oszillator	58
2.18	FM-Signal-Generator oder Wobbler	59
2.19	1296 MHz	60
2.20	AM, FM und Kipposzillator	61
2.21	1-kHz-Rechteck	62
2.22	600 kHz bis 12 MHz	63
2.23	TTL-Quarz-Kalibrierer	64
2.24	Fünf-Punkte-Standard	65
2.25	Harmonische-Generator von 6 – 36 MHz	66
2.26	100-kHz-Kalibrierer	67
2.27	Empfänger-Prüfer	68
2.28	CMOS-Markengenerator	69
2.29	5 MHz Standard	
2.30	50 MHz mit Abschwächer	71
2.31	Gepulster Markierer	72
2.32	Universeller Signalgenerator	
2.33	Netzwerktester	
2.34	1-MHz-Quarz-Kalibrierer	
2.35	NF- und HF-Frequenzen aus 1 MHz	
2.36	Sekundärer Standard	
2.37	1 Hz bis 1 MHz	
2.38	1 – 10 MHz Quarz	
2.39	2-MHz-Standard mit Teilern	
2.40	1 – 10 Hz Sinus	
2.41	455 kHz frequenzmoduliert	
2.42	HF/VHF-Markengenerator	
3.	Einseitenband-(SSB-) Schaltungen	85
3.1	Produktdetektor	86
3.2	SSB-Strom-Mittelwert-Messgerät	87
3.3	SSB-Monitor	88
3.4	Sprachprozessor	89
3.5	Off-Air-Monitor	89

3.6	Seitenband-Mischer	90
3.7	Weicher Begrenzer	90
3.8	3 – 30-MHz-Quadratur-Phasenschieber	91
3.9	Vorverstärker mit Begrenzer	91
3.10	Kompressor und Former in der Vorstufe	92
3.11	660 und 1000 Hz zum Testen von SSB	93
3.12	Quarz-Schwebungssummer (BFO)	94
3.13	Spike-Begrenzer	94
3.14	SSB-Detektor	95
3.15	Zweiton-Bursts	96
3.16	Träger-Oszillator	97
3.17	90°-Phasenschieber mit Brücken	
3.18	SSB/Dauerstrich-Demodulator	99
3.19	Aktiver Breitband-Phasenschieber 1	00
3.20	MOSFET-Produktdetektor	01
3.21	20-Meter-Direkt-Umwandlung 1	02
3.22	Logarithmischer Begrenzer 1	04
3.23	Seitenband-Wähler	
3.24	Begrenzer	06
3.25	Filter als SSB-Generator	07
3.26	Zweiton-Tester	08
3.27	Nicht abgestimmter doppelt abgeglichener Mischer	09
3.28	Produktdetektor mit nur einer Versorgungsspannung 1	
3.29	10-MHz-Produktdetektor	11
3.30	SSB-Detektor durch Phasenabgleich	12
4.	Sirenen-Schaltungen	13
4.1	10-W-Auto-Alarmsirene	14
4.2	Tiefton-Sirene 1	15
4.3	Sirene 1	16
4.4	Feuersirene verwendet Blitzer	16
4.5	Feuersirene	17
4.6	Polizeisirene	18
4.7	Variable Frequenz und Rate	19
4.8	Schreihals	20
4.9	Variabler Ton durch VCO (Spannungsgesteuerter Oszillator)	21
4.10	Laute Fahrradsirene	22
4.11	Polizei-Warnalarm	23
4.12	Justierbare Sirene	24
4.13	Polizeisirene verwendet Blitzer	25
4.14	Tragbare Spielzeugsirene	26
4.15	Manuell Steuerbare Sirene	27

4.16	Sirene mit Stummschaltung
4.17	Sirenen-Chip mit 10 V
5.	Squelch-Schaltungen (Rauschsperre)
5.1	NF-Rauschsperre
5.2	Vom Träger betätigter Schalter
5.3	NF-Rauschsperre
5.4	Digitaler CTCSS-Oszillator
5.5	3-W-Klasse-A/B-Verstärker
5.6	NF-Rauschsperre
5.7	Stiller COR (vom Träger geschaltetes Relais)
5.8	Steuerton-Dekoder
5.9	Squelch mit einer Röhre
5.10	Squelch-Adapter
5.11	Squelch
5.12	100-Hz-CTCSS-Oszillator
5.13	Rauschunterdrückung
5.14	Squelch
	•
6.	Treppenspannungsgeneratoren
6.1	Sechs-Stufen-FBAS
6.2	Treppenspannungssignal mit drei Operationsverstärkern
6.3	Stufen für Kurvenmonitor
6.4	48 Hz 12 Stufen
6.5	4 – 400 Hz bipolar
6.6	Sieben Stufen
6.7	Konverter vom Typ Zähler
6.8	Negatives Triggern
6.9	Stufengenerator
6.10	Rechteck in Stufenumwandlung
6.11	Stufen-Funktionsgenerator
6.13	256 negative Stufen
6.12	Pulszüge bilden Treppenspannung
6.14	Grauskala-Testgenerator
7.	Stereo-Schaltungen
7.1	Aktiver Klangregler
7.2	FM-Rauschunterdrückung
7.3	Atmosphäre durch rückwärtige Kanäle
7.4	Ultra-rauscharmer Vorverstärker
7.5	Stereo-FM-Demodulator
7.6	Vorverstärker mit 53 dB

7.7	Vorverstärker mit Klangregelung 168
7.8	Aktive Mittelbereichs-Klangregelung
7.9	Summe und Differenz
7.10	Balance- und Lautstärkeregelung
7.11	Stereo-Hall
7.12	Hallverstärkung
7.13	Aktiver Klangregler durch Rückkopplung
7.14	Phasenabgleich für Lautsprecher
7.15	FM-Demodulator
7.16	PLL-Dekoder
7.17	PLL-Stereo-FM-Demodulator
7.18	Billiger Stereo-Plattenspieler
7.19	Kopfhörerverstärker
7.20	FM-Zisch-Begrenzer
7.21	Vorverstärker mit Klangregelung
7.22	Nichtinvertierender Leistungsverstärker
7.23	Invertierender Leistungsverstärker
8.	Ablenk-Schaltungen
8.1	Ablenkung mit 15 Bereichen
8.2	Bidirektionaler Sägezahn
8.3	Linearer Sägezahn
8.4	Ablenk-Sägezahn
8.5	Einfachster Ablenk-Generator
8.6	Logikgesteuerte Sägezahn-Geschwindigkeit
8.7	Spannungsgesteuerter Sägezahn mit 0,2 bis 20.000 Hz
8.8	Justierbarer nichtlinearer Sägezahn
8.9	Schneller Rücklauf 2-V-Sägezahn
8.10	Sägezahn mit 30 Hz
8.11	Sägezahn mit 20 Hz bis 100 KHz
8.12	Komplementärer Sägezahn
8.13	Lineare/logarithmische Ablenkung
8.14	Spannungsgesteuerter Sägezahn
8.15	Exponentieller Sägezahn
8.16	Digitaler Sägezahn
8.17	10,7-MHz-Ablenk-Generator
8.18	Variabler Start/Stopp
8.19	Digitaler Sägezahn
8.20	Sägezahn aus 10 V
8.21	Ultralineare Ablenkung

9.	Schaltanwendungen
9.1	Schnell Ein/Aus
9.2	Transformator-Ansteuerung für Schalttransistor
9.3	Differenz-Analogschalter
9.4	Analog mit hoher Umschaltrate
9.5	Zweipoliger FET-Umschalter
9.6	Vierkanal-Umschalter
9.7	Video-Schalter
9.8	Schalter mit Ferrit-Kernen
9.9	Einpoliger Umschalter mit Speicher-Flipflop
9.10	FET-Analogschalter
9.11	Schaltender Operationsverstärker
9.12	Schutz für Analogschalter
9.13	Diamond-Brücken-Analogschalter
9.14	Einpoliger Umschalter für Wechselspannung
9.15	Schaltende Operationsverstärker mit einer Versorgungsspannung 220
9.16	Logikgesteuerter Analogschalter
9.17	Nichtflüchtiges Latch
9.18	Kapazitiv angekoppelter Treiber für einen Schalttransistor
9.19	Synchronisiertes Schalten
9.20	Negativer einpoliger Umschalter
9.21	Zweipoliger Umschalter mit FET
9.22	Zwei-Funktionen-Schalter
9.23	Analogschalter für 80 Veff
10.	Schaltregler-Schaltungen 229
10.1	Schaltregler 5 – 24 Schaltregler
10.2	5 V/10 A geschaltet
10.3	5 V geschaltet mit fester Aus-Zeit
10.4	5 V bei 1 A
10.5	Variable Ein-Zeit
10.6	-10 V geschaltet
10.7	5 V/40 A/20 kHz im Schaltmodus
10.8	Aufwärtsregler 5 V auf 15 V
10.9	Variable Schaltfrequenz
10.10	-5-V-Sperrwandler
10.11	Steuerung für Schaltregler
10.12	Positive Hochspannung geschaltet
10.13	-5 V/3 A geschaltet
10.14	24 V auf 5 V reduziert
10.15	5 V auf 200 V Schaltregler
10.16	+10 V geschaltet

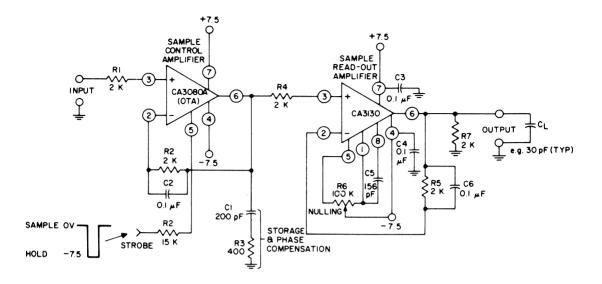
10.17	Batterieregler	. 246
10.18	Gegentakt-Ausgang	. 247
10.19	5 V geschaltet	. 248
10.20	150 W geschaltet	. 249
10.21	5 kW geschaltet	. 250
10.22	+12 V und +15 V aus 4–24 V	. 251
10.23	–5 V aus höherer Spannung	
10.24	6 V für einen Rechner	. 253
10.25	10 V/100 mA geschaltet	. 254
10.26	+12 V und +15 V aus 5 V	. 255
10.27	3,3 kW geschaltet	. 256
10.28	4,5 – 30 V/6 A geschaltet	. 258
10.29	+12 V nach -15 V transformiert	. 259
10.30	Höhere Spannung negativ geschaltet	. 260
10.31	-12 V/300 mA aus -48 V	. 261
10.32	Leistungsschalter für Schaltregler	. 262
10.33	+5 V nach -15 V	. 263
10.34	15 V aus 7,5 – 30 V	. 264
10.35	24 V/2 A aus 12 V	. 265
10.36	+/-15 V nachgeführt	. 266
10.37	5 V geschaltet	. 267
10.38	Schaltregler mit Mehrfach-Ausgängen	. 268
10.39	5 V/10 A geschaltet	. 269
10.40	24-V-/3-A-Schaltmodus	. 270
10.41	250V / 3A	. 271
10.42	–5 V geschaltet	. 272
10.43	28 V/100 W	. 273
10.44	Symmetrie-Korrektur	. 274
10.45	50 V/1 kW	. 275
10.46	Höhere Spannung positiv schaltend	. 276
10.47	24 V/3 A für Kabelfernsehsysteme	. 277
11.	Tonband-Schaltungen	. 279
11.1	Digitale Aufnahmen mit Kassetten	. 280
11.2	Lösch-/Vormagnetisierungsoszillator	. 281
11.3	Kassetten-Vorverstärker	. 281
11.4	Kassetten-Interface	. 282
11.5	Kassetten-Dateien-Update	. 283
11.6	Auslesen von Kassettendaten	. 284
11.7	Kopfhörerverstärker	
11.8	NAB- (National Association of Broadcasters)	
	Wiedergabe-Vorverstärker	. 286

11.9	Kassetten-Interface
11.10	CW und RTTY auf Kassetten
11.11	Kopieren von Kassettenprogrammen
11.12	Schnell einschaltender Wiedergabe-Vorverstärker
11.13	Abspielen von CW und RTTY
11.14	Wiedergabeverstärker
11.15	Morsen vom Band
11.16	Kopftreiber für Digitalkassetten
11.17	Aufnahmeverstärker
11.18	Aufnahmeverstärker
11.19	Wiedergabe-Vorverstärker
11.20	Mikrofon-Vorverstärker
11.21	Wiedergabe von Impulszügen
11.22	Von der Information gesteuerter Rekorder
11.23	Stereo-Bandabspielgerät
11.24	Bedienungsfreier Rekorder
11.25	Interface für Audio-Kassetten
11.26	Vorverstärker für Digitalkassette
11.27	300-Baud-Bit-Boffer-Sender
11.28	Wiedergabe-Vorverstärker für vier Geschwindigkeiten
11.29	Kassetten-Interface mit ACIA
	(asynchronous communication interface adapter)
11.30	300-Baud-Bit-Boffer-Empfänger
11.31	Ultra-rauscharmer Wiedergabe-Vorverstärker
11.32	Kassettenaufnahme/-wiedergabe
11.33	Automatische Bereichserweiterung
11.34	FSK-Generator für Kassettendaten
11.35	12-V-Wiedergabe-Vorverstärker
11.36	AVC und VOX
11.37	NAB-Vorverstärker
11.38	Wiedergabe von Kassettendaten
11.39	FSK-Detektor für auf Kassetten gespeicherte Daten
11.40	FM zum Messen
12.	Telefon-Schaltungen
12.1	Wählton-Generator
12.2	Tastenton-Encoder
12.3	Klingelsimulator
12.4	Stabiler Encoder 325
12.5	Tastenimpuls-Generator
12.6	Ferngespräch-Killer
12.7	PLL-Einton-Decoder

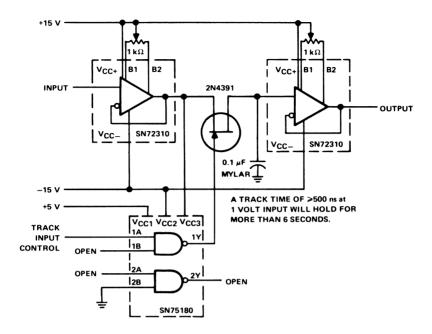
12.8	Zweiton-Signaltechnik
12.9	Einton-Decoder
12.10	Anrufzähler
12.11	Tastenton-Encoder
12.12	Tastenton-Treiber für Lautsprecher
12.13	Autopatch-Trennung
12.14	Tastenton-Sperrfilter
12.15	Belegt-Signal-Generator
12.16	Drucktasten/Wählscheiben-Wandler
12.17	Tastenton-Encoder
12.18	45-kHz-Tiefpassfilter mit variablen Modi
12.19	Tastenton-Decoder
12.20	PLL-Tastenton-Decoder
12.21	Ton-Encoder
12.22	Einton-Signalisierung 34
12.23	Mobiler Autopatch
12.24	Tastenton-IC
12.25	Zweiton-Encoder
12.26	Vier-Nummern-Wähler 34
12.27	Tastenton-Wähler
12.28	Klingelsignal-Detektor
12.29	Tastenton-Encoder mit einem IC
13.	Fernseher-Schaltungen
13.1	Quarz-VFO-Synchronisationsgenerator
13.2	NF-Frequenz-Phasenschieber
13.3	SSTV Ablenkungstreiber
13.4	25-MHz-Video-Vorverstärker
13.5	Rauscharmer UHF-Vorverstärker 358
13.6	Fernseher-Ausschalter mit Warnpiepser
13.7	Chroma-Prozessor
13.8	Composite Farbsignalgenerator
13.9	SSTV Vertikal-SYNC-Anzeige
13.10	Linearer Verstärker 363
13.11	Synchroner Videodetektor 364
13.12	Komparator trennt SYNC-Impulse 36:
13.13	Video-Modulator 36:
13.14	VHF-Tuner mit Kapazitätsdiode
13.15	Oszilloskop als TV-Monitor
13.16	Sound-Subsystem
13.17	ATV-Rufgenerator
13.18	SYNC-Trenner

Klangverbesserung für Fernseher 371
Ablenkung für SSTV-Monitor
Allzweck-Video-Schalter
Farbbalkengenerator
Linearer FET-Modulator
Infrarotsender für den Fernsehton
Variable Verzögerung bis zu 7 μs
AFT-Subsystem
RGB-Ausgang
Digitale Leitungswahlschalter
Vertikal-SYNC-Trenner
Chroma-System
Modulator/Multiplizierer
Mikroprozessor-SSTV-Interface
ZF-Sound-Subsystem
S-förmige Rampe
Horizontalsystem für 19" Farbe
Hochfrequenz-Modulator
Videoschalter für 2 Kameras
Verschachtelte SYNC
Anhang
Liferanten-Verzeichnis

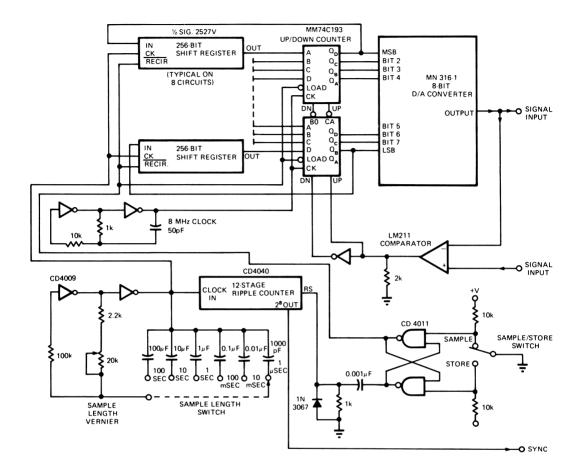
1. Abtast-/Halte-Schaltungen (Sample And Hold)


Methoden zum Abtasten und Halten analoger Signale, eingeschlossen digitale Auswahl des Abtastpegels und Langzeitspeicherung von Signalen in digitaler Form als Ersatz für Speicheroszilloskope.

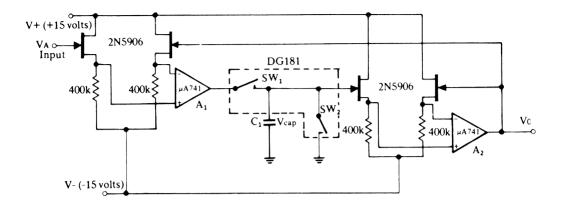
1.1 Zwei Anstiegszeiten


Die Kosten für eine Sample-and-Hold-Schaltung lassen sich reduzieren, wenn man die hohe Anstiegsgeschwindigkeit nur während des Abtastens benützt. Der programmierbare Operationsverstärker µA776 erlaubt die Umschaltung von schnellem Anstieg mit 50 nA Eingangsnullstrom in den Haltemodus, der nur noch 750 pA benötigt. Der Ausgang wird etwa 2 s stabil gehalten, was die Schaltung besonders geeignet für digitale Anzeige macht.

1.2 Abtastverstärker


Der Transkonduktanz-Operationsverstärker RCA3080A speist den CA3130 für die Verstärkung des abgetasteten Signals. Die Eingangsspannung wird während der Dauer des Abtastimpulses übernommen und zum Auslesen bereitgehalten.

1.3 Verfolgen und Halten


Wenn der Track-Eingang 0,8 V oder weniger beträgt, hält das Gatter im SN75180 den Source-Drain-Pfad des Transistors 2N4391 geschlossen und das Eingangssignal trifft unverändert auf den Ausgang. Steigt die Steuerspannung auf 2 V, öffnet das Gate den Pfad durch den Transistor und die Signalspannung wird in diesem Augenblick in dem 0,1-µF-Kondensator am Ausgang festgehalten. Die Abtastzeit ist größer als 500 ns, mit einer Haltezeit von über 6 s. Die Schaltung verwendet zwei breitbandige Spannungsfolger-Operationsverstärker.

1.4 256 8-Bit Abtasten/Speichern

Einen kostengünstigen Ersatz für ein Speicheroszilloskop kann man dazu verwenden analoge Variable zur Sprachsynthese, Transienten-Analyse und zerstörendem Test von Bauteilen zu studieren. Die Schaltung ist im Grunde ein verfolgender A/D-Wandler, dessen Ausgang in ein Schieberegister läuft, das 256 x 8-Bit-Daten auffangen kann. Der getrennte Taktgenerator für das Schieberegister, dessen Ausgang auf einen 12-stufigen Asynchronzähler läuft, ist stufenlos einstellbar zwischen 250 kHz bis hinunter zu 4 s/Takt. Bei 250 kHz speichert das Register 1 ms des Eingangssignals.

1.5 Sample and Hold nichtinvertierend

Die gepaarten FETs ergeben einen hohen Eingangswiderstand gegenüber dem Eingangssignal von mehr als $10^{12}\,\Omega$, während der Ausgangswiderstand < $12\,\mathrm{k}\Omega$ ist. Der Operationsverstärker A_1 wirkt als Puffer und erlaubt C_1 sich schnell zu laden. Der Analogschalter DG181 begrenzt den Leckstrom in oder aus dem Kondensator C_1 , während SW ein schnelles Rücksetzen der Kondensatorspannung auf 0 ermöglicht. Ein gleichartiges Paar FETs ermöglicht eine Ausgangsspannung proportional zur Abtastspannung.

Band 3: 302 neue professionelle Schaltungen

Applikationsschaltungen für Praxis, Labor und Studium

1.	Temperaturregler-Schaltungen
1.1	Kochplattenregler
1.2	Dosierender Regler
1.3	Ofenregelung
1.4	75 – 250°-Ofenregelung
1.5	Zweipunktregler für Heizer 24
1.6	Siliziumdioden-Sensor
1.7	Proportionaler Herdregler
1.8	0,001 °C Genauigkeit
1.9	Zeitproportionale Regelung
1.10	Differenz auf 10 °F
1.11	Regler für Quarzofen 30
1.12	Phasenanschnittgesteuerter Thyristor-Regler
1.13	Schalter mit geringer Verlustleistung
1.14	Thermoelement mit Nulldurchgangsschalter
1.15	Regler für Raumheizung 34
1.16	75 °C für Quarzofen
1.17	0,000075 °C Badregler 36
1.18	EMI-freie Phasensteuerung für Heizer
1.19	Geber für thermische Zyklen
1.20	Detektor für Temperaturdifferenz
1.21	0,0000033 °C chopperstabilisierter Ofenregler
1.22	PTC-Brücke
1.23	Vorausschauender Regler
1.24	Übersteuerungskompensation 44
1.25	Quarzofen
1.26	0,01-°C-Regler mit Operationsverstärker-Komparator
2.	Temperaturmess-Schaltungen 46
2.1	Verstärker für Thermoelement
2.2	70 – 80 °C Thermometer
2.3	Transistorsensor
2.4	-125 °C bis +200 °C mit 1° Genauigkeit
2.5	PTC-Thermometer

2.6	5-stelliges Thermometer
2.7	4 Thermoelemente gemultiplext
2.8	Monitor mit rot/grün-LED
2.9	0 – 100 °F liefert 0 – 1 kHz am Ausgang
2.10	Null Unterdrückung
2.11	Temperatur/Frequenz-Wandler
2.12	IC für Differenzial-Thermoelement
2.13	Temperaturwandler-Interface
2.14	Integrator für Heizenergie 57
2.15	Verstärker für Thermoelement
2.16	Temperatur/Frequenz-Wandler
2.17	0,1 °C Präzision
2.18	PTC-gesteuerter Timer
2.19	Digitales Thermometer
2.20	Vollkommen linearer Diodensensor
2.21	Differenzthermometer
2.22	Transistorsensor
2.23	0 – 100 °C mit 1° Genauigkeit
2.24	Messung der absoluten Temperatur
2.25	Thermometer
2.26	Temperatur-/Pulsbreite
2.27	Heiß/Kalt-Messinstrument
2.28	Sensor mit gepaarten Transistoren
2.29	Messgerät für das Kältegefühl im Wind
2.30	125 – 470 °K ergibt 125 – 470 Hz
2.31	Positionssensor
2.32	U/f- und f/U-Wandler für ein digitales Schalttafel-Instrument
2.33	Anemometer
2.34	Kleinstleistungs-Thermometer
2.35	Temperatur/Frequenz-Wandler
2.36	Differenztemperatur-Sensor
2.37	Multiplexer für Thermoelemente
2.38	Brückensensor
2.39	Fahrenheit/Celsius-LED-Thermometer
2.40	Spannungsreferenz-Thermometer
2.41	Nachgeführte Temperatur der Abschirmung
2.42	0 – 100 °C mit 0,15° Genauigkeit
2.43	U/f-Wandler für Messumformer
2.44	+/-1 °K Genauigkeit von -55 bis +125 °C
• •	
3.	Test-Schaltungen
3.1	JFET-Kennlinienschreiber

2.2	NE C'and Indulate
3.2	NF-Signal-Injektor
3.3	Transistor-/Dioden-Tester
3.4	Test von Dioden mit einem Oszilloskop
3.5	Dioden-Kennlinien-Schreiber
3.6	Quarztester
3.7	Tester für gekapselte Spulen
3.8	Signal-Injektor
3.9	Testoszillator für Transistoren
3.10	Paaren von Operationsverstärkern
3.11	Leckstrom von Dioden und FETs
3.12	HF-Transistor-Tester
3.13	Transistor-Tester mit nur einem Operationsverstärker
3.14	Programmierbarer IC-Tester
3.15	Tester für Audioleitungen
3.16	Hochgenauer Kennlinien-Schreiber
3.17	IC-Test-Clip
3.18	Transistor-Pin-Sucher
3.19	Transistor-Kennlinien-Schreiber
3.20	Quarztester im Taschenformat
3.21	Diodentester
3.22	Stabivolt-Tester
3.23	Tragbarer Quarztester
3.24	Transistor-Durchbruchtester
3.25	Spitzenleistungsmessgerät
3.26	TTL-Tester
3.27	Tester für Bandpassfilter
3.28	Frequenz-Wobbler
3.29	Transistortester
3.30	Digitaler Pseudo-Zufallsgenerator
3.31	Induktivitätsmesser
3.32	Tester für Stromversorgungen
3.33	Quarztester
3.36	Transistor- und Diodentester
3.35	Einschwingverhalten von geregelten Versorgungen
3.36	
	FET-Tester
3.37	Kennlinien-Schreiber
3.38	Impedanz-Messgerät
3.39	Diodentester
3.40	Tragbarer Transistortester
3.41	NF-Signalverfolger
3.42	Tester für Leistungsdioden
3.43	TTL-GO/NO-GO-Tester

3.44	Tester für Stromversorgungen
3.45	Dynamische Last
3.46	Tester für Quad-Operationsverstärker
3.47	Operationsverstärker-Tester
3.48	Transistortester
3.49	Temperaturkoeffizienten-Computer
3.50	IN-CIRCUIT-Tester
3.51	NF-Signalverfolger
3.52	Tester auf Popcorn-Störungen
3.53	Transistortester
3.54	Amperemeter für gedruckte Leiterbahnen
4.	Timer-Schaltungen
4.1	Zeit-Komparator
4.2	Halbleiter-Auschaltverzögerung
4.3	Wiederholter Zyklus
4.4	Geräte-Timer
4.5	10-min-Verzögerung
4.6	10-h-FET 142
4.7	Ausschalter fürs Radio
4.8	10-min-Timer mit Kennung
4.9	Voreinstellbarer analoger Timer
4.10	Eier-Timer mit blitzender LED
4.11	Ausschalter fürs Transistorradio
4.12	1,5-min-Verzögerung
4.13	10 s mit 1,5-V-Versorgung
4.14	Kaskadierter Timer
4.15	Batterie-Abschaltung
4.16	Reset-Modus
4.17	Timer zieht minimalen Strom
4.18	Timer-Sequenz
4.19	Stabiler Timer mit vier Transistoren
4.20	Timer-Sequenz
4.21	Verzögerung mit langer Ausschaltzeit
4.22	10-s-Timer
4.23	10-h-Verzögerung
4.24	Kaskade mit automatischem Retriggern
4.25	Zeitverzögerung verwendet IC mit Leistungstransistor
4.26	t/U-Wandler
4.27	1 s mit hoher Präzision
4.28	30 s nicht nachtriggerbar
4.29	Batterie-Schoner

5.1	Bistabiler Berührungsschalter
5.	Schaltungen für Berührungsschalter
7.00	Digitale Stoppalli
4.68	Digitale Stoppuhr
4.67	Timer mit dreistufiger Sequenz
4.66	Timer mit Speicher
4.65	Zwei unabhängige Verzögerungen
4.64	1 min mit einem Transistor-Array
4.63	Digitale Fernprogrammierung des Timers
4.62	Über 1 min
4.61	FET-Timer mit Relais
4.60	Lange Verzögerung mit Monostabiler 555
4.59	3 min bis 4 h
4.58	4-h-Steuerung für einen Triac
4.57	Ausfallsicherer Licht-Timer
4.56	Unijunction/Thyristor-Timer
4.55	10 s bis 10 min
4.54	10-min-Timer
4.53	Test-Sequenzer
4.52	Batterieschonender Timer
4.51	Daumenrad-Einstellung bis 99 min
4.50	2 – 5 min gestartete Verzögerung
4.49	Timer mit 10 Intervallen
4.48	Haushalt-Timer mit 1 h
4.47	Programm-Timer
4.46	Lange Intervalle mit kleinen Cs
4.45	0 – 10 min mit 1 s Genauigkeit
4.44	0 – 5 min Verzögerung
4.43	Mikrosekunden bis Stunden
4.42	Ein- oder Ausschaltsteuerung
4.41	Ausfallsicherer Timer für Züge
4.40	10 min mit Blinken
4.39	Ereignisregister
4.38	Timer-Sequenz
4.37	0,5333 – 136 s mit der Genauigkeit der Netzfrequenz
4.36	90 s Sprechzeit-Warnung
4.35	Sprech-Timer
4.34	Stoppuhr
4.33	1 h mit Zyklus-Ende-Schalter
4.32	Mikrosekunden bis Stunden
4.31	Timer für 1 Jahr
4.30	4 h Timer-Sequenz

5.2	Entprellung für einen Berührungsschalter
5.3	Justierbare Chancen für die Lotterie
5.4	Bistabiler Schalter
5.5	Berührungsschalter
5.6	Berührungsschalter
5.7	Dateneingabe
5.8	Berührungsplatte mit Relais
5.9	Speichernder Berührungsschalter 200
5.10	Logikschalter
5.11	Näherungsschalter
5.12	Steuerung für TV-Spiele
5.13	Knobeln mit Münzen
5.14	Berührungsschalter verwendet Timer
5.15	Steuerung für Analogsignale
5.16	Berührungstaster
5.17	Durch Berührung gesteuertes Relais
5.18	FM-Tuning mit Berührungstastern
5.19	Automatisches Ausschalten
5.20	Keyboard ohne Kontakte
5.21	Berührungsschalter
5.22	Näherungsschalter
5.23	Berührungsschalter für Musik-Keyboard
5.24	Entprellung eines Berührungsschalters
5.25	Berührungsschalter
6.	Transceiver-Schaltungen
5.1	Sprachgesteuertes Gatter
5.2	3,5-W-Sender
5.3	Anpassung eines Mikrofons mit niedriger Impedanz
5.4	TR-Schalter mit Diode
5.5	Piepser für das Ende des Sendens
5.6	Scannender Adapter
5.7	TR-Schalter mit 4 Dioden
5.8	Abstimmhilfe
5.9	Bilateraler Verstärker
5.10	VOX für SSB
5.11	Unijunction-Transistor-getriggerte Klemmschaltung (crowbar)
5.12	Zusätzliche 15W
5.13	9-MHz-Quarz
5.14	10-Kanal-Scanner
5.15	Frequenzverdreifachung auf 1267,2 MHz
5.16	2 – 23 MHz nicht abgestimmter Tuner

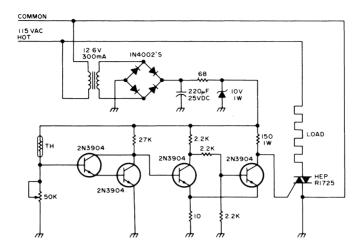
6.17	12-V-Klemmschaltung (crowbar)	35
6.18	4-Kanal-VHF-FM-Scanner	36
6.19	TR-Steuerung	37
6.20	422,4-MHz-Leistungsverstärker	38
6.21	5 MHz +/- 500 kHz	39
6.22	14-MHz-VFO mit Verdoppler 2	40
6.23	6,545 – 6,845-MHz-VFO	41
6.24	VFO für 2 Meter und alle Kanäle	42
6.25	422,4-MHz-Quarz-Oszillator	43
6.26	Doppelt abgestimmter Mischer 2	44
6.27	VFO für 5 – 5,55 MHz	45
6.28	Silbengesteuerte VOX	46
6.29	Sendermischer	48
6.30	TR-Schalter 2	49
6.31	Kompensator für die Aufwärm-Drift	50
6.32	7 – 7,1-MHz-VFO	51
6.33	500-kHz-Scan auf 2-m-Band	52
6.34	Kohlemikrofon für den mobilen Einsatz 2.	53
6.35	Scanner mit Rücksuche	54
6.36	Hochgeschwindigkeits-VOX	55
6.37	3 – 3,5-MHz-Tuner mit Kapazitätsdioden	56
6.38	TR-Schalter	57
6.39	Scanner für das 2-m-Band	58
6.40	TR-Schalter mit PIN-Diode	60
6.41	Fernbedientes Tuning	61
6.42	Scanner	62
6.43	76,25 und 81,6 MHz	63
6.44	Scanner für das 2-m-Band	64
6.45	HF-abtastender TR-Schalter	65
6.46	Markengenerator	66
-		
7.	Sender-Schaltungen	
7.1	Transistor für Oszillator- und ZF-Röhren	
7.2	3 KV bei 2 kW	
7.3	5-W-FET-Sender	
7.4	144 MHz Kleinleistung	
7.5	4 W linear	
7.6	250 mW für 40 m CW	
7.7	2 – 30 MHz 140 W linear	
7.8	1,4 W linear für 7 und 14 MHz	
7.9	¹ / ₄ -W-CW-Sender	
7.10	2 m QRP	77

/.11	10 w auf 2 m	2//
7.12	80 W linear für mobiles SSB	278
7.13	20-m-VFO	279
7.14	30-mW-/25-MHz-Verstärker	
7.15	80-m-CW für QRP	280
7.16	143 – 156-MHz-/80-W-Verstärker	281
7.17	420 – 450 MHz 100 W linear	282
7.18	Transistoren für Treiberröhren	283
7.19	10 V temperaturstabilisiert	284
7.20	432 – 450 MHz	285
7.21	Verstärkte Zenerdiode	286
7.22	10 W auf 2 m	287
7.23	2 – 30 MHz 300 W linear	288
7.24	2-m-Leistungsverstärker	289
7.25	160 W linear SSB	290
7.26	VMOS 8-W-Breitband	291
7.27	10-W-Marineband	292
7.28	HF-Wattmeter	293
7.29	20-MHz-Telefon	294
7.30	1,8 – 1,9-MHz-VFO	295
7.31	60 W linear für 432 MHz	296
7.32	144 – 175-MHz-/80-W-Einzelstufe FM mobil	
7.33	80 W auf 2 m	298
7.34	1-W-Exciter für 7 und 14 MHz	299
7.35	300 W linear mit Halbleitern	300
7.36	500 mW auf 180 kHz	301
7.37	2,5-W-Flugzeug-AM-Sender	302
7.38	7 W für QRP	303
7.39	Messung der Spitzenleistung	304
7.40	450 – 470 MHz bei 25 W	305
7.41	40-m-CW	306
7.42	175 MHz 80 W mobil FM	307
7.43	100 W linear für 432 MHz	308
7.44	VFO für 7 und 14 MHz	309
7.45	10 W bei 450 MHz	310
7.46	VMOS 5-W-Breitband	310
7.47	1200-W-PEP-Leistungsverstärker	311
7.48	450 – 470 MHz bei 10 W	312
7.49	1 kW Gitter an Masse	313
7.50	5 W bei 80 oder 40 m	314
7.51	2-m-FM-Exciter	315
7.52	2 W für 20-m-CW	316

7.53	50-W-Gegentakt	17
7.54	10 W für 220 MHz	18
7.55	1 W bei 175 kHz	19
7.56	140 – 180 MHz bei 30 W	20
7.57	400 W im Gegentakt	21
7.58	1,6 – 30-MHz-/20-W-Treiber mit hoher Verstärkung	22
7.59	1 – 2 MHz	23
7.60	Transistoren für NF-Röhren	24
7.61	15-W-Leistungsverstärker für 400 MHz	25
7.62	PTT Latch	26
7.63	Transistoren für Mischer- und Gleichrichterröhren	27
7.64	35 W Klasse D auf 40, 80 oder 160 m	28
7.65	80-m-VFO	<u> 2</u> 9
7.66	1 kW auf 2 m	30
7.67	21 – 21,5 MHz mit VFO	31
7.68	Bias-Schalter	32
7.69	2 – 30-MHz-SSB-Treiber	33
7.70	50 W HF	34
7.71	16 – 30-MHz-/20-W-Lineartreiber	35
7.72	40-m-/3,5-W-Verstärker	36
8.	Spannungsgesteuerte Oszillator-Schaltungen	
8.1	Starre 90°-Ausgänge	
8.2	Fern-Feinabstimmung	
8.3	100:1-Frequenzbereich	
8.4	Schnelles Synchronisieren	
8.5	Linearer VCO	
8.6	Einschalt-Steuerung	
8.7	Linearer VCO	
8.8	1-kHz-VCO	
8.9	0 – 10 kHz mit 0 – 10-V-Steuerung	
8.10	Exponentieller VCO	
8.11	Abstimmung durch Reaktanz-Schalten	
8.12	Spannungsgesteuerter Quarz	
8.13 8.14	52 MHz mit FM VVC	
8.15	1,5 – 2 kHz Sinus	
8.16	Einfacher VCO-Treiber	
8.17	Lineare Ausgangsrampe	
8.18	Verdoppelung des Steuerbereichs	
0.10		1.7
8.19	Quadratur-Oszillator mit Multiplizierern	-

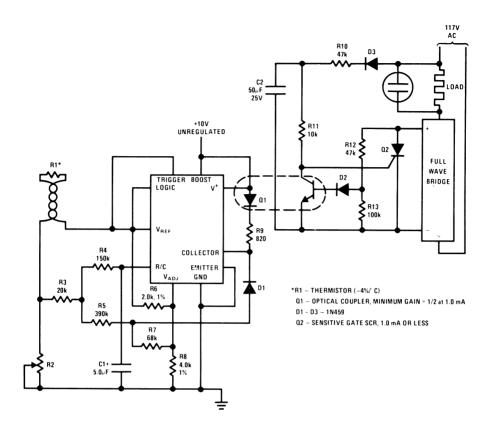
9.	Spannungspegel-Detektor-Schaltungen
9.1	Ausfallsicheres TTL-Interface
9.2	12-V-Monitor
9.3	4 – 8-V-Fenster
9.4	Unterspannungs-Alarm
9.5	Alarm bei Ausfall der Versorgungspannung
9.6	Überspannungs-Alarm
9.7	Mehrfachkanal-Alarm
9.8	LED-Spannungsüberwachung
9.9	VCO erfasst Spannungsgrenzen
9.10	Spannung außerhalb der Grenzen
9.11	Detektor für positive Spitzen
9.12	Alarm bei niedriger Spannung
9.13	Spitzen- und Tiefpunktdetektor
9.14	Nullpunkt mit Überspannungsschutz
9.15	Nulldetektor mit Hysterese
9.16	Gepufferter Spitzendetektor
9.17	Nulldurchgangsdetektor mit logarithmischem Verstärker
9.18	Fensterdetektor
9.19	Programmierbarer Spitzendetektor von 0 bis +/-10 V
9.20	Detektor für zwei Grenzen
9.21	Spannungspegel-Latch
9.22	Pegelanzeige
9.23	5-V-Spitzen bis zu 2 MHz
9.24	Eine LED zeigt den Signalpegel an
9.25	Spannungsmonitor
9.26	Nulldurchgangsdetektor für das Wechselspannungsnetz
9.27	555 Trigger
9.28	Augenblicklicher Endwert
9.29	Alarm bei niedriger Spannung
9.30	Alarm für den Gefrierschrank
9.31	+/-1,5- bis +/-7,5-V-Schwelle
9.32	Fensterdetektor
9.33	Nulldurchgangsdetektor
10.	Spannungsmess-Schaltungen
10.1	Eingang mit 1 Teraohm
10.2	Voltmeter mit Balkenanzeige
10.3	Detektor für positive Spitzen
10.4	Elektrometer
10.5	FET-Millivoltmeter
10.6	AC-Voltmeter mit erweitertem Bereich

10.7	AC/DC-Konverter	388
10.8	Netzspannungsmonitor	389
10.9	Zenerdiode schützt Messinstrument	389
10.10	4½-stelliges Volt-/Ohmmeter	390
10.11	Absolutwerte	391
10.12	Netzspannungsmonitor	391
10.13	20-VDC-FET-Voltmeter	392
10.14	IC modernisiert Röhrenvoltmeter	393
10.15	Großbereichs-Messsonde	394
10.16	Verstärker mit kalibrierter Verstärkung	395
10.17	Überlast am Messgerät	396
10.18	Voltmeter für Spitze/Spitze	397
10.19	Detektor für wahren Effektivwert	398
10.20	DC-Voltmeter	399
10.21	IC-Millivoltmeter	400
10.22	2 – 10 Vss wahrer Effektivwert bis 600 kHz	401
10.23	AC-Spitzen	402
10.24	Differenzeingang mit massebezogenem Ausgang	403
10.25	Spitzen und Täler einer Wellenform	404
10.26	Abgestimmtes Voltmeter	405
10.27	Differenzeingänge mit hoher Impedanz	406
10.28	DC-Voltmeter mit Operationsverstärker	407
10.29	AC-Millivoltmeter	408
10.30	Spitzen anzeigender HF-Tastkopf für DC-Voltmeter	409
10.31	10-Bereichs-DC-Voltmeter	410
10.32	Elektrometer mit Operationsverstärker	411
10.33	Absolutwerte	412
10.34	Hörbares Voltmeter	413
10.35	IC für digitales Voltmeter treibt ein Messgerät	414
10.36	Polaritätsanzeige für ein Digitalvoltmeter	415
10.37	0 – 2-V-Digitalvoltmeter	416
10.38	Null-Anzeige	417
10.39	Präzisions-Signalgleichrichter	417
10.40	8-Kanal-3½-stelliges computergestütztes Digitalvoltmeter	418
10.41	Zeitmarken für Streifenschreiber	419
10.42	3½-stelliges Digitalvoltmeter	420
10.43	Präzisions-Gleichrichter	421
10.44	DC-Voltmeter mit abgeglichenen FETs	422
10.45		423
10.46	FET-Voltmeter	424
10.47	Verstärker für Messgerät	
10.48	U/f-Wandler	426

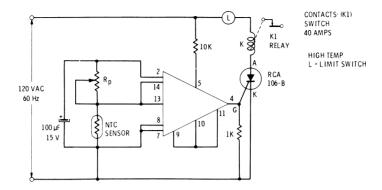

10.49	Elektroskop
10.50	Hohe Eingangsimpedanz
10.51	FET-Voltmeter
10.52	Null-Voltmeter
10.53	Polaritätsanzeige
10.54	4½-stelliges Messgerät
10.55	AC-Differenzsignale
10.56	Voltmeter für 0 – 200 MHz
10.57	Polaritäts-Messgerät für das Netz
10.58	3 ¾-stelliges Messgerät
10.59	FET-Voltmeter
10.60	FET-AC-Voltmeter
10.61	Automatische Polaritäts-Umschaltung
	Ç
11.	Spannungsreferenz-Schaltungen 441
11.1	Variable Referenz
11.2	1,5 – 12 V vier Ausgänge
11.3	Regelung auf 0,005 %
11.4	+/-5 V mit einem Operationsverstärker
11.5	Von -6,9 V bis +6,9 V variabel
11.6	Einstellbare Referenz
11.7	Präzisions-Band-Gap-Referenz
11.8	+5, +15 und +25 V
11.9	0 – 10,0000 V in 100-μV-Stufen
11.10	Selbststabilisierende Zenerdiode
11.11	5 V bei 7,5 mA
11.12	+15 V bei 100 mA
11.13	10 V aus einer Standardzelle
11.14	10-V-Micropower
11.15	3,4 V strahlungsgehärtet
11.16	+10,000 V
11.17	Gepufferte 10 V
11.18	10 V hoher Präzision
11.19	Variable 2,5 – 10 V
11.20	-6,6 V mit 741er Operationsverstärker
11.21	+6,6 V bei 5 mA
11.22	+10, +20 und +30 V
11.23	1 V mit hoher Präzision
11.24	+6,6 V mit 741er Operationsverstärker
11.25	Niedrige Drift und Micropower
11.26	6,5-V-Referenz
11.27	10 V mit Temperatur-Kompensations-Trimmung

11.28	10 V mit mäßiger Drift	. 462
11.29	+/-2,5 V	. 463
11.30	Ersatz für eine 1,01-V-Standardzelle	. 464
11.31	+/-7 V Referenz	. 465
11.32	+15 V mit hoher Präzision	. 466
11.33	5 V aus 15 V	. 467
11.34	10,000 V mit Zenerdiode	. 468
11.35	0 – 6,6 V bei 5 mA	. 468
11.36	Operationsverstärker als mV-Referenz	. 469
11.37	Großer Eingangsspannungsbereich	. 469
11.38	+8,2 V	. 470
11.39	Aufwärtsskalierung	. 470
11.40	+10 V mit Bootstrap-Operationsverstärker	. 471
	Anhang	. 473
	Lieferanten-Verzeichnis	474

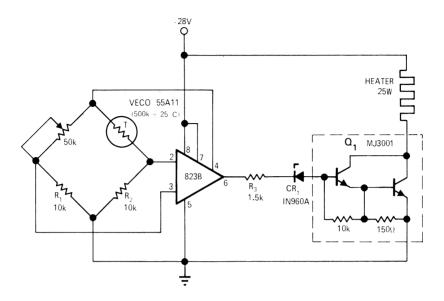
1. Temperaturregler-Schaltungen


Eine Vielzahl von Schaltungen halten die Temperatur auf einem gewünschten Sollwert mit einer Genauigkeit von bis zu 0,0000033 °C. Besondere Kennzeichen schließen die Kompensation von überschießender Temperatur, vorausschauende Regelung, Differenzregelung und dosierende Regelung ein.

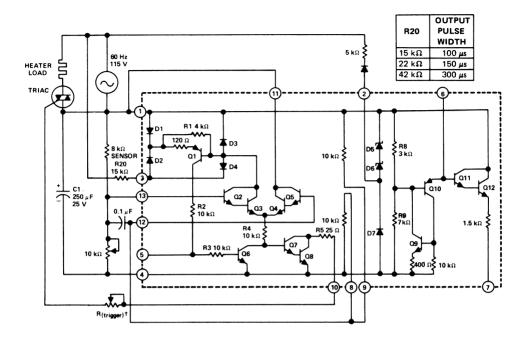
1.1 Kochplattenregler


Verwendet einen PTC Modell K600A von Allied Electronics eingebaut in eine langsam kochende Platte, um die ideale Kochtemperatur einzuhalten. Das Potentiometer kann justiert werden, um die Triggerung für den Zweipunktregler des Heizelementes des Kochers zu erhalten.

1.2 Dosierender Regler


Der Timer LM122 von National wird als dosierender Temperaturregler mit optischer Trennung und synchronisiertem Nulldurchgang verwendet. Mit der Einstellung von R_2 wird die von dem PTC R_1 zu regelnde Temperatur vorgegeben. Der Thyristor Q_2 wird so gewählt, dass er die Last schalten kann. D_3 ist für 200 V ausgelegt. R_{12} , R_{13} und D_2 realisieren die Eigenschaft des synchronen Nulldurchgangs.

1.3 Ofenregelung


Die einfache Schaltung mit dem RCA CA3059 Nulldurchgangsschalter regelt die Ein- und Aus-Intervalle eines Thyristors für kleine Ströme, der die Relaisspule in einem Elektro- oder Gasofen steuert. Der Messwiderstand hat einen negativen Temperaturkoeffizienten. R_p wird auf die gewünschte Temperatur eingestellt.

1.4 75 - 250°-Ofenregelung

Bewirkt eine proportionale Temperaturregelung eines kleinen Ofens innerhalb 1°C über den Temperaturbereich. Verwendet einen Spannungsregler 823B, der aus derselben 28-V-Quelle wie der Ofen versorgt wird. Das Potentiometer für die Vorgabe der Temperatur sollte ein 10-Gang-Drahtpotentiometer sein. Der Leistungstransistor \mathbf{Q}_1 arbeitet in der Sättigung oder in der Nähe davon, damit ist kein Kühlkörper notwendig.

1.5 Zweipunktregler für Heizer

Verwendet wird der Nulldurchgangsschalter SN72440 von Texas Instruments der den Triac triggert und im Zusammenspiel mit dem 8-k Ω -Messwiderstand die Heizung nach den Erfordernissen ein- und ausschaltet. Durch die Wirkung des Differenzverstärkers und der Widerstandsbrücke im IC wird ein Ausgangsimpuls pro Durchgang in der Netzspannung unterdrückt oder erlaubt. Die Breite des Ausgangspulses an Pin 10 wird vom Trigger-Potentiometer geregelt, wie in der Tabelle dargestellt, und sollte so verändert werden, dass sie den Trigger-Eigenschaften des verwendeten Triacs angepasst ist.

Band 4: Standardschaltungen

der Digital- und Analogtechnik

1	Grundsätzliche Betrachtungen	. 21
1.1	Widerstände	. 21
1.2	Kondensatoren	. 24
1.3	Halbleiter	. 27
1.3.1	Diode	. 27
1.3.2	Zenerdiode	. 27
1.3.3	LEDs	. 28
1.3.4	Transistoren	. 28
1.3.5	Integrierte Schaltungen	. 28
1.3.6	Aufbau von Schaltungen	. 30
2	Integrierte digitale Schaltungen	. 31
2.1	Binäres Zahlensystem	. 31
2.2	Logische Gatter	. 31
3	Integrierte Schaltungen mit MOS-/CMOS-Technologie	. 33
3.1	Betriebsbedingungen für CMOS	. 33
3.2	Vorsichtsmaßnahmen im Umgang mit CMOS	. 34
3.3	Ansteuerung von CMOS	. 35
3.4	CMOS-Fehlersuche	. 38
3.5	4-fach-NAND-Gate 4011	. 38
3.5.1	2-fach-NAND-Gate	. 39
3.5.2	Inverter	. 39
3.5.3	AND-Gate	. 39
3.5.4	OR-Gate	. 40
3.5.5	AND-OR-Gate	40
3.5.6	NOR-Gate	. 40

3.5.7	4-fach-NAND-Gate	41
3.5.8	EXOR-Gate	41
3.5.9	EXNOR-Gate	41
3.5.10	Steuerbarer Rechteckoszillator	42
3.5.11	Einfacher Rechteckoszillator	42
3.5.12	Steuerbarer Blinker	42
3.5.13	Erhöhte Ausgangsleistung	43
3.5.14	Berührungsschalter	43
3.5.15	Monostabiler Berührungsschalter	44
3.6	4-fach-NOR-Gate 4001	44
3.6.1	Prellfreier Schalter	45
3.6.2	Steuerbarer Tongenerator	
3.6.3	RS-Flip-Flop	46
3.6.4	Erhöhte Ausgangsleistung	
3.6.5	LED-Blinker	47
3.6.6	OR-Gate	47
3.7	4-fach-AND-Gate 4081	48
3.7.1	AND-Gate-Puffer	
3.7.2	NAND-Gate	
3.7.3	NOR-Gate	
3.7.4	4-Input-NAND-Gate	
3.7.5	4-Input-AND-Gate	
3.7.6	AND-OR-Invert-Gate	
3.7.7	Steuerbares Gatter	51
3.8	4-fach-EXOR-Gate 4070	51
3.8.1	1-Bit-Komparator	
3.8.2	4-Bit-Komparator	
3.8.3	Steuerbarer Inverter	
3.8.4	Binärer Volladdierer	
3.8.5	Phasendetektor	
3.8.6	Exclusive-NOR	
3.8.7	Exclusive-OR mit 8 Eingängen	
3.8.8	Exclusive-OR mit 3 Eingängen	
3.8.9	Oszillator 10 MHz	
3.8.10	Rechteckgenerator	
3.9	6-fach-Inverter-Puffer 4049	56
3.9.1	Taktimpulsgenerator	
3.9.2	Phasenschieber-Oszillator	
3.9.3	Prellfreier Schalter	

3.9.4	Dreieck/Rechteck-Wellenform-Generator	58
3.9.5	Rechteck-Generator	58
3.9.6	Linearer 10-fach-Verstärker	59
3.10	6-fach-Puffer nicht invertierend 4050	59
3.10.1	Signalverteiler	60
3.10.2	Ausgangspuffer	60
3.10.3	Logik-Tastkopf	60
3.10.4	Ausgangspuffer für hohe Leistung	61
3.10.5	CMOS-zu-CMOS-Interface $V_{DD}1 > V_{DD}2$	61
	CMOS-zu-TTL/LS-Interface $V_{DD} > V_{CC}$	
3.11	2-faches 4-Input-NAND-Gate 4012	62
	2x2-Input-NAND mit Enable	
	1-aus-4-Decoder	
3.11.3	BCD-Decoder für Dezimal 0	64
	BCD-Decoder für Dezimal 1	
3.11.5	BCD-Decoder für Dezimal 9	65
3.12	3-faches 3-Input-NAND-Gate 4023	65
3.12.1	OR-Gate mit 6 Eingängen	
3.12.2	OR-Gate mit 9 Eingängen	66
3.12.3	Dezimal-zu-BCD-Konverter	67
3.12.4	1-aus-4-Decoder	68
3.13	4-fach bilateraler Schalter 4066	69
3.13.1	Datenbusverbinder	69
3.13.2	Datenselektor 1 aus 4	70
	Einfacher D/A-Wandler	
	Programmierbarer Funktionsgenerator	
3.13.5	Verstärker mit programmierbarer Verstärkung	72
3.14	1024x1-Bit-Static-RAM 2102L	72
	Adressierschaltung für 2102L	
3.14.2	Manuelle/Programmierbare Adressierung	74
	Single I/O-Port	
3.14.4	Kaskadierung von 2102L-RAMs	75
3.15	1024x4-Bit-Static-RAM 2114L/4045	76
3.15.1	Adressansteuerung für 2114L	76
	1024-Nibble-Dateneingabe	
3.16	2-fach-D-Flip-Flop 4013	78
3.16.1	1-aus-4-Sequenzer	79
3 16 2	Teiler: 2	79

	Modulo-8-Zähler	
3.17.2 3.17.3 3.17.4	2-fach-JK-Flip-Flop 4027 Teiler: 2 Teiler: 3 Teiler: 4 Teiler: 5 4-Bit-Seriell-IN/OUT, Parallel-OUT-Shift-Register	81 82 82 82
	4-fach-Latch 4042 4-Bit-Datenspeicher Treppenstufengenerator	84
3.19.2	2-fach-One-Shot 4528 Positives One-Shot Impulsverzögerung Pulsierender Tongenerator	85 86
	14-stufiger Binärzähler 4020 14-Bit-Binärzähler Treppenstufengenerator	87
	2-fach-BCD-Zähler 4518 Kaskadierter BCD-Zähler BCD-Tastaturcodierer	89
3.21.1 3.21.2 3.22 3.22.1 3.22.2 3.22.3 3.22.4 3.22.5	Kaskadierter BCD-Zähler	89 89 90 90 91 91 92
3.21.1 3.21.2 3.22 3.22.1 3.22.2 3.22.3 3.22.4 3.22.5 3.22.6 3.23.1 3.23.1	Kaskadierter BCD-Zähler BCD-Tastaturcodierer Dekadischer Zähler/Teiler 4017 Zufallszahlgenerator 110 Zähler bis N mit Halt Zähler bis N mit Wiederholung Zähler 099 BCD-Tastatur-Encoder	89 89 90 90 91 91 92 92 93 93 94

3.25	BCD-zu-7-Segment-Latch/-Decoder/-Treiber 4511	
	Steuerbarer Anzeigen-Blinker	
3.25.2	Dezimalzähler	. 99
3.26	8-stufiges Schieberegister 4021	99
3.26.1	Parallel-Seriell-Konverter	100
3.26.2	8-stufige Verzögerungsleitung	100
3.26.3	Pseudo-Zufallsgenerator	101
3.27	Analog-Multiplexer 4051	101
3.27.1	1-aus-8-Multiplexer	102
3.27.2	1-aus-8-Datenwahlschalter (Demultiplexer)	102
3.27.3	Tonsequenzer	103
3.28	60-Hz-Zeitbasis MM5369	103
3.28.1	60-Hz-Zeitbasis	104
3.28.2	10-Hz-Zeitbasis	104
		104
3.28.4	Digitale Stoppuhr	105
3.29	Rausch-Generator S2688 / MM5837N	105
3.29.1	Quelle für weißes Rauschen	106
3.29.2	Quelle für rosa Rauschen	106
	0/1-Zufallsgenerator	
3.29.4	Simulation Federteppich-Trommel (Snare)	107
4	Integrierte Schaltungen mit TTL-/LS-Technologie	108
4.1	Einführung	108
4.2	Betriebsbedingungen für TTL/LS	108
4.3	Zusammenschalten von TTL und LS	109
4.4	TTL-/LS-Fehlersuche	109
4.5	4-fach-NAND-Gate 7400 / 74LS00	109
4.5.1	Control-Gate	110
4.5.2	Inverter	
4.5.3	AND-Gate	
4.5.4	OR-Gate	
4.5.5	AND-OR-Gate	
4.5.6	NOR-Gate	
4.5.7	4-Input-NAND-Gate	111

4.5.8	EXCLUSIVE-OR-Gate	112
4.5.9	EXCLUSIVE-NOR-Gate	112
4.5.10	Halbaddierer	112
4.5.11	D-Flip-Flop	113
4.5.12	RS-Latch	113
4.5.13	Gated RS-Latch	114
4.5.14	LED-Blinker	114
4.5.15	Tasten-Entprellung	115
4.5.16	NAND mit 8 Eingängen	115
4.5.17	HEX-Decoder für die Zahl 9	116
4.5.18	Anonymer Stimmenzähler	116
4.6	4-fach-AND-Gate 7408 / 74LS08	117
4.6.1	AND-Gate-Puffer	117
4.6.2	NAND-Gate	117
4.6.3	NOR-Gate	118
4.6.4	NAND-Gate mit 4 Eingängen	118
4.6.5	AND-Gate mit 4 Eingängen	118
4.6.6	AND-OR-Invert-Gate	119
4.6.7	Digitale Torschaltung	119
4.7	4-fach-OR-Gate 74LS32	119
4.7.1	AND-OR-Gate	120
4.7.2	NOR-Gate	120
4.7.3	NAND-Gate	120
4.7.4	Datenselektor mit 2 Eingängen	121
4.8	4-fach-NOR-Gate 7402 / 74LS02	121
4.8.1	EXCLUSIVE-OR-Gate	122
4.8.2	RS-Latch	122
4.8.3	NOR-Gate mit 4 Eingängen	
4.8.4	AND-Gate	
4.8.5	OR-Gate	123
4.8.6	Monostabile Kippstufe (Mono)	123
4.9	2-fach-NAND-Gate mit 4 Eingängen 74LS20	
4.9.1	HEX/BCD-Decoder	
4.9.2	Dezimal-zu-BCD-Codierer	125
4.10	A C. I. NOD C. A. MATCH. W. MALCON	125
	3-fach-NOR-Gate mit 3 Eingängen 74LS27	
4.10.1	Gated RS-Latch	126
4.10.1		126

4.11.2	NAND-Gate mit 8 Eingängen 74LS30 8-Bit-Decoder Anonymer Abstimmdecoder Programmierbares NAND-Gate	128 129
4.12.2	2-fach-AND-OR-Gate 74LS51 Latch mit Enable-Input AND-OR-Input 1-aus-2-Datenselektor für 4-Bit-Worte	131 131
4.13.2 4.13.3	2-fach-NAND-Schmitt-Trigger 74LS13 Steuerbarer Schwellen-Detektor Lichtimpuls-Empfänger Steuerbarer Oszillator Steuerbarer LED-Blinker	133 133 133
4.14.2 4.14.3	8-fach-Inverter 7404 / 74LS04 Prellfreier Schalter	135 135 136
4.15.2 4.15.3	6-fach-Bustreiber mit Tri-State 74LS367 Tri-State-Ausgang für TTL 1-aus-2-Datenselektor für 1-Bit 1-aus-2-Datenselektor für 2-Bit Bidirektionaler Datenbus	137 138 138
4.16.2 4.16.3	6-fach-Bustreiber mit Tri-State 74LS368 Steuerbarer LED-Blinker Bidirektionaler Datenbus Steuerbarer Tongenerator Prellfreier Schalter	140 141 141
4.17 4.17.1 4.17.2	1	143
4.18 4.18.1 4.18.2	BCD-zu-Dezimal-Decoder 7441 1-aus-10-decodierter Zähler 10-Noten-Tongenerator	144
4.19.2	BCD-zu-7-Segment-Decoder-Treiber 7447/74LS47 Manuell schaltbare Anzeige 09-Sekunden/Minuten-Timer Display-Blinker	146 146

4.20 4.20.1 4.20.2	BCD-zu-7-Segment-Decoder-Treiber 7448/74LS48 Display-Dimmer	148
4.21 4.21.1 4.21.2	3-auf-8-Leitungsdecoder/-demultiplexer 74LS138 1-aus-8-Demultiplexer	149
4.22 4.22.1 4.22.2	1-aus-16-Decoder/-Demultiplexer 74LS154 1-aus-16-Demultiplexer Lauflicht	151
4.23.2	4-Bit-1-aus-2-Datenselektor 74LS157 Erweiterung für 7-Segment-Display Bus-Selector Datensortierer	152 153
4.24 4.24.1 4.24.2 4.24.3	1-aus-8-Datenselektor/-Multiplexer 74LS151 Programmierbares Gate 1-Bit-Mustergenerator 8-fach-Keyboard-Encoder	154 155
	2-fach monostabiler Multivibrator 74LS123 Grundschaltung eines monostabilen Multivibrators Impulsausfalldetektor Tonstufengenerator	156 157
4.26.3	2-fach-D-Flip-Flop 74LS74 2-Bit-Datenregister Phasendetektor Wellenform-Auffrischer Teiler: 2	158 159 159
4.27 4.27.1 4.27.2 4.27.3	2-fach-JK-Flip-Flop 74LS73 Teiler: 2 Teiler: 3 Teiler: 4	160 160
4.28 4.28.1 4.28.2	2-fach-JK-Flip-Flop 74LS76	162
4.29 4.29.1 4.29.2	4-fach-Latch 74LS75 4-Bit-Daten-Latch Dezimaler Zähler	163

4.30	4-fach-D-Flip-Flop 74LS175	164
4.30.1	4-Bit-Datenregister	165
4.30.2	Modulo-8-Zähler	165
4.30.3	Schieberegister Seriell/Parallel	165
4.31	Dekadischer BCD-Zähler 74LS90	166
4.31.1	Teiler: 5	166
4.31.2	Teiler: 6	166
4.31.3	Teiler: 7	166
	Teiler: 8	
	Teiler: 9	
4.31.6	Teiler: 10	167
4.32	Dekadischer BCD-Zähler 74LS196	167
4.32.1	Dekadischer Zähler	168
	4-Bit-Latch	
	Teiler: 5	
4.32.4	Teiler: 10	169
4.33	Binärzähler: 12 74LS92	169
	Teiler: 7	
	Teiler: 9	
	Teiler: 12	
	Teiler: 6	
4.33.5	Teiler: 120	170
4.34	4-Bit-Binärzähler 74LS93	170
	Teiler: 10	
	Teiler: 11	
	Teiler: 12	
	Teiler: 16	
4.34.5	4-Bit-Zähler	
4.35	BCD-Vorwärts-/Rückwärtszähler 74LS192	
	Kaskadierte Zähler	
	Umschalter für Vorwärts-/Rückwärtszähler	
4.35.3	Programmierbarer Count-Down-Timer	173
4.36	4-Bit-Vorwärtszähler 74LS161	
4.36.1	Treppenspannungsgenerator	
4.36.2	8-Bit-Zähler	175
4.37	4-Bit-Vorwärts-/Rückwärtszähler 74LS193	175
4.37.1	Rückwärtszähler von N mit Wiederholung	176
4.37.2	Vorwärtszähler bis N mit Stop	176
4.37.3	Vorwärtszähler bis N mit Wiederholung	177

	4-Bit-Schieberegister 74LS194 Bitmustergenerator Leuchtbalkengenerator	178
	8-Bit-Schieberegister 74LS164 8-Bit-Seriell-zu-Parallel-Konverter Pseudo-Zufallswellenform-Generator	180
	8-fach-Puffer 74LS240	182
	8-fach-Puffer 74LS244 4-Bit-Datenbusverbindung 8-Bit-Datenbusverbindung	183
	8-fach-D-Latch 74LS373 Tri-State-Register Datenbus-Register	185
	8-fach-D-Flip-Flop 74LS374	186
4.43.2	8 8	
4.44	8-fach-Bus-Transceiver 74LS245 Bus-Transceiver	188
4.44	8-fach-Bus-Transceiver 74LS245	188 189
4.44 4.44.1	8-fach-Bus-Transceiver 74LS245	188 189 190 191 192 192
4.44 4.44.1 5 5.1 5.1.1 5.1.2	8-fach-Bus-Transceiver 74LS245 Bus-Transceiver Lineare integrierte Schaltungen Spannungsregler 7805 (5 Volt), 7812 (12 Volt), 7815 (15 Volt) 5-Volt-Netzteil für TTL-Schaltungen Spannungsregler	188 189 190 191 192 192 193
4.44 4.44.1 5 5.1 5.1.1 5.1.2 5.1.3 5.2 5.2.1	8-fach-Bus-Transceiver 74LS245 Bus-Transceiver Lineare integrierte Schaltungen Spannungsregler 7805 (5 Volt), 7812 (12 Volt), 7815 (15 Volt) 5-Volt-Netzteil für TTL-Schaltungen Spannungsregler Stromquelle -5-Volt-Spannungsregler 7905 Festspannungsregler für –5 Volt	188 189 190 191 192 193 193 194 194 195 195

5.5	237-V-Spannungsregler 723	
5.5.1	27-V-Spannungsregler	
5.5.2	737-V-Spannungsregler	199
5.6	Steuerbare Zenerdiode TL431	199
5.6.1	Nebenschluss-Regler	200
5.6.2	Einfacher Timer	200
5.6.3	Spannungsdetektor	201
5.6.4	1,55-V-Spannungsregler	201
5.7	1,233-V-Spannungsregler LM350T	202
5.7.1	1,220-V-Spannungsregler	
5.7.2	Leistungsimpulsgenerator	
5.8	OP-Verstärker 741	202
5.8.1	Invertierender Verstärker	
5.8.2	Nicht invertierender Verstärker	
5.8.3	Impedanzwandler/Spannungsfolger	
5.8.4	Komparator	
5.8.5	Verstärker mit unipolarer Versorgungsspannung	
5.8.6	Pegeldetektor	
5.8.7	Integrator-Grundschaltung	
5.8.8	Differenzierer-Grundschaltung	
5.8.9	Begrenzer-Verstärker	
	Brücken-Verstärker	
	Summier-Verstärker	
	Differenz-Verstärker	
	Lichtwellenempfänger	
	60-Hz-Kerb-Filter	
	Hochpass-Filter	
	Tiefpass-Filter	
	4-Bit-D/A-Wandler	
	Lichtmesser	
	Lichtmesser mit Balkenanzeige	
	Elektronische Glocke	
5.8.21	Lichtsensor mit akustischer Ausgabe	211
5.9	2-fach-OP-Verstärker 1458	212
5.9.1	Spitzenwertdetektor	
5.9.2	DC-Pulse-Generator	
5.9.3	Funktionsgenerator	

5.10 5.10.1 5.10.2 5.10.3 5.10.4	2-fach-J-FET-OP-Verstärker LF353N Sample and Hold Spitzenwertdetektor Audio-Mixer OP-Verstärker mit programmierbarer Verstärkung	214215215
5.11 5.11.1 5.11.2 5.11.3	4-fach-OP-Verstärker TL084 Mikrofonvorverstärker Verstärker für niedrige Quell-Impedanzen Infrarot-Sprachübertragung	217 217
5.12 5.12.1 5.12.2 5.12.3 5.12.4	4-fach-OP-Verstärker LM324 Bandpass-Filter 1 kHz Infrarotsender Impulsgenerator Interface-Schaltungen	219 219 220
5.13 5.13.1 5.13.2 5.13.3 5.13.4	4-fach-OP-Verstärker LM3900N Astabiler Multivibrator Bistabiler Multivibrator (Flip-Flop) Funktionsgenerator 10x-Verstärker	221 222 222
	4-fach-Komparator LM339 Nicht invertierender Komparator Invertierender Komparator Nicht invertierender Komparator mit Hysterese Invertierender Komparator mit Hysterese TTL-Treiber CMOS-Treiber Komparator mit Tri-State-Ausgang LED-Leuchtband-Anzeige Fensterkomparator Rechteckgenerator Programmierbarer Lichtmesser	224 224 225 225 225 225 226 227 227
5.15 5.15.1 5.15.2 5.15.3 5.15.4 5.15.5 5.15.6 5.15.7	Lichtgesteuerter Ton-Oszillator	229 229 229 230 230 231

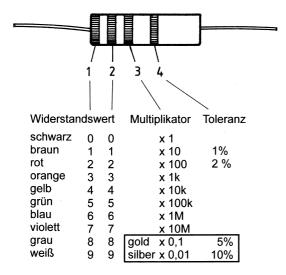
5.15.8 5.15.9	Mini-Orgel	
5.15.10	TTL-gesteuerter LM 3909	
5.16	Leuchtzeilendisplay-Treiber LM3914N	
5.16.1	Punkt-/Balkenanzeige	
5.16.2	Anzeige mit 20 Elementen	
5.16.3	Blinkende Balkenanzeige	
5.16.4	Mini-Oszilloskop	
5.16.5	LM3914N als Controller	237
5.17	Leuchtzeilendisplay-Treiber LM3915N	238
5.17.1	027-dB-Punkt-/Leuchtbandanzeige	
5.18	LED-VU-Meter-Modul NSM3916	239
5.18.1	VU-Leuchtbandanzeige	
5.18.2	Vorwärts-/Rückwärts-Blinker	
5.19	LCD-Uhrenmodul PCIM-161	
5.19.1	Uhr mit Weckalarm	
5.19.2	Uhr mit Radiowecker	
5.19.3	Zeitgesteuertes Relais	
5.20	Zeitgeber 555	
5.20.1	Innenschaltung 555	
5.20.2	Prellfreier Schalter	
5.20.3	Monostabiler-Zeitgeber	
5.20.4	Timer mit Relais	
5.20.5	Spielzeug-Orgel	
5.20.6	LED-Sender	
5.20.7	Impulsgenerator für TTL und CMOS	
5.20.8	Impulsausfall-Detektor	
5.20.9	Zeitverzögerung extra lang	
	Berührungsempfindlicher Schalter	
	Licht-Alarm	
	Dunkel-Detektor	
	Spannungsquelle für Glimmlampe	
	Frequenzteiler	
	Dreiecksgenerator	
3.20.16	Tonimpulsgenerator	
5.21	2-fach-Zeitgeber 556	
5.21.1	Intervall-Zeitgeber	
5.21.2	A A 1 FF	
3.21.2	3-fach-Tongenerator	252

5.21.3	555/556-Thyristor-Ausgang	252
5.21.4	Klang-Synthesizer	253
5.21.5	2-Stufen-Zeitgeber	253
5.21.6	Programmierbarer 4-fach-Tongenerator	254
5.22	4-fach-Zeitgeber 558	254
5.22.1	Timer-Grundschaltung	255
5.22.2	Monostabiler	255
5.22.3	Programmierbarer Sequenzer/Ablaufsteuerung	255
5.22.4	Impulsgenerator einstellbar	256
5.22.5	Einfacher Oszillator	256
	Festes Impulsverhältnis	
5.22.7	Langzeit-Zeitgeber	257
5.23	Zeitgeber 7555	258
5.23.1	Analog-Frequenzmesser	258
5.23.2	Lichtprüfer für Blinde	259
5.23.3	Vorgangsüberwachung	259
5.24	Phase Locked Loop (PLL) 565	260
5.24.1	Pulsfrequenzmodulierter Infrarot-Sender	260
5.24.2	Infrarot-Empfänger	261
5.25	Phase Locked Loop (PLL) 4046	261
	Phase Locked Loop (PLL) 4046	
5.25.1 5.25.2	Lautsprecherverstärker Zwitscher-Sequenzer	262262
5.25.1 5.25.2 5.25.3	Lautsprecherverstärker Zwitscher-Sequenzer Abstimmbarer Oszillator	262262263
5.25.1 5.25.2 5.25.3 5.25.4	Lautsprecherverstärker Zwitscher-Sequenzer Abstimmbarer Oszillator Sirene	262262263263
5.25.1 5.25.2 5.25.3 5.25.4 5.25.5	Lautsprecherverstärker Zwitscher-Sequenzer Abstimmbarer Oszillator Sirene Klangeffekt-Generator	262 262 263 263 264
5.25.1 5.25.2 5.25.3 5.25.4 5.25.5 5.25.6	Lautsprecherverstärker Zwitscher-Sequenzer Abstimmbarer Oszillator Sirene Klangeffekt-Generator Frequenz-Synthesizer	262 262 263 263 264 265
5.25.1 5.25.2 5.25.3 5.25.4 5.25.5 5.25.6 5.25.7	Lautsprecherverstärker Zwitscher-Sequenzer Abstimmbarer Oszillator Sirene Klangeffekt-Generator Frequenz-Synthesizer Lock-Anzeige	262 263 263 264 265 266
5.25.1 5.25.2 5.25.3 5.25.4 5.25.5 5.25.6 5.25.7	Lautsprecherverstärker Zwitscher-Sequenzer Abstimmbarer Oszillator Sirene Klangeffekt-Generator Frequenz-Synthesizer	262 263 263 264 265 266
5.25.1 5.25.2 5.25.3 5.25.4 5.25.5 5.25.6 5.25.7 5.25.8	Lautsprecherverstärker Zwitscher-Sequenzer Abstimmbarer Oszillator Sirene Klangeffekt-Generator Frequenz-Synthesizer Lock-Anzeige Tonimpuls-Generator Ton-Decoder 567	262 263 263 264 265 266 266
5.25.1 5.25.2 5.25.3 5.25.4 5.25.5 5.25.6 5.25.7 5.25.8 5.26 5.26.1	Lautsprecherverstärker Zwitscher-Sequenzer Abstimmbarer Oszillator Sirene Klangeffekt-Generator Frequenz-Synthesizer Lock-Anzeige Tonimpuls-Generator Ton-Decoder 567 Tondetekor-Grundschaltung	262 263 263 264 265 266 266 267
5.25.1 5.25.2 5.25.3 5.25.4 5.25.5 5.25.6 5.25.7 5.25.8 5.26 5.26.1 5.26.2	Lautsprecherverstärker Zwitscher-Sequenzer Abstimmbarer Oszillator Sirene Klangeffekt-Generator Frequenz-Synthesizer Lock-Anzeige Tonimpuls-Generator Ton-Decoder 567 Tondetekor-Grundschaltung Infrarot-Fernbedienungssystem	262 263 263 264 265 266 266 267 267 268
5.25.1 5.25.2 5.25.3 5.25.4 5.25.5 5.25.6 5.25.7 5.25.8 5.26 5.26.1 5.26.2 5.26.3	Lautsprecherverstärker Zwitscher-Sequenzer Abstimmbarer Oszillator Sirene Klangeffekt-Generator Frequenz-Synthesizer Lock-Anzeige Tonimpuls-Generator Ton-Decoder 567 Tondetekor-Grundschaltung Infrarot-Fernbedienungssystem 2-Frequenz-Oszillator	262 263 263 264 265 266 267 267 268 268
5.25.1 5.25.2 5.25.3 5.25.4 5.25.5 5.25.6 5.25.7 5.25.8 5.26 5.26.1 5.26.2 5.26.3 5.26.4	Lautsprecherverstärker Zwitscher-Sequenzer Abstimmbarer Oszillator Sirene Klangeffekt-Generator Frequenz-Synthesizer Lock-Anzeige Tonimpuls-Generator Ton-Decoder 567 Tondetekor-Grundschaltung Infrarot-Fernbedienungssystem 2-Frequenz-Oszillator 2-Phasen-Oszillator	262 263 263 264 265 266 267 267 268 268 269
5.25.1 5.25.2 5.25.3 5.25.4 5.25.5 5.25.6 5.25.7 5.25.8 5.26 5.26.1 5.26.2 5.26.3 5.26.4 5.26.5	Lautsprecherverstärker Zwitscher-Sequenzer Abstimmbarer Oszillator Sirene Klangeffekt-Generator Frequenz-Synthesizer Lock-Anzeige Tonimpuls-Generator Ton-Decoder 567 Tondetekor-Grundschaltung Infrarot-Fernbedienungssystem 2-Frequenz-Oszillator 2-Phasen-Oszillator Ausgang des 567 einfrieren	262 263 263 264 265 266 267 267 268 268 269 269
5.25.1 5.25.2 5.25.3 5.25.4 5.25.5 5.25.6 5.25.7 5.25.8 5.26 5.26.1 5.26.2 5.26.3 5.26.4 5.26.5	Lautsprecherverstärker Zwitscher-Sequenzer Abstimmbarer Oszillator Sirene Klangeffekt-Generator Frequenz-Synthesizer Lock-Anzeige Tonimpuls-Generator Ton-Decoder 567 Tondetekor-Grundschaltung Infrarot-Fernbedienungssystem 2-Frequenz-Oszillator 2-Phasen-Oszillator Ausgang des 567 einfrieren Schmalbandfrequenz-Detektor	262 263 263 264 265 266 267 268 268 269 269 270
5.25.1 5.25.2 5.25.3 5.25.4 5.25.5 5.25.6 5.25.7 5.25.8 5.26 5.26.1 5.26.2 5.26.3 5.26.4 5.26.5	Lautsprecherverstärker Zwitscher-Sequenzer Abstimmbarer Oszillator Sirene Klangeffekt-Generator Frequenz-Synthesizer Lock-Anzeige Tonimpuls-Generator Ton-Decoder 567 Tondetekor-Grundschaltung Infrarot-Fernbedienungssystem 2-Frequenz-Oszillator 2-Phasen-Oszillator Ausgang des 567 einfrieren	262 263 263 264 265 266 267 268 268 269 269 270
5.25.1 5.25.2 5.25.3 5.25.4 5.25.5 5.25.6 5.25.7 5.25.8 5.26 5.26.1 5.26.2 5.26.3 5.26.4 5.26.5 5.26.5 5.26.7	Lautsprecherverstärker Zwitscher-Sequenzer Abstimmbarer Oszillator Sirene Klangeffekt-Generator Frequenz-Synthesizer Lock-Anzeige Tonimpuls-Generator Ton-Decoder 567 Tondetekor-Grundschaltung Infrarot-Fernbedienungssystem 2-Frequenz-Oszillator 2-Phasen-Oszillator Ausgang des 567 einfrieren Schmalbandfrequenz-Detektor Telefonwahlton-Decoder 12-Tasten-Telefontongeber CEX-4000	262 263 263 264 265 266 267 267 268 269 269 270 270
5.25.1 5.25.2 5.25.3 5.25.4 5.25.5 5.25.6 5.25.7 5.25.8 5.26 5.26.1 5.26.2 5.26.3 5.26.4 5.26.5 5.26.5	Lautsprecherverstärker Zwitscher-Sequenzer Abstimmbarer Oszillator Sirene Klangeffekt-Generator Frequenz-Synthesizer Lock-Anzeige Tonimpuls-Generator Ton-Decoder 567 Tondetekor-Grundschaltung Infrarot-Fernbedienungssystem 2-Frequenz-Oszillator 2-Phasen-Oszillator Ausgang des 567 einfrieren Schmalbandfrequenz-Detektor Telefonwahlton-Decoder 12-Tasten-Telefontongeber CEX-4000	262 263 263 264 265 266 267 267 268 269 270 270 272

5.28	Spannung/Frequenz-Umsetzer 9400	273
5.28.1	Grundschaltung V/f-Konverter	274
5.28.2	FSK-Binärdaten-Sender	275
5.28.3	Übertragungssystem für analoge Spannungen	276
5.28.4	Tonfrequenzmesser	277
5.29	Spannungsgesteuerter Oszillator (VCO) 566	277
5.29.1	Funktionsgenerator	278
	FSK-Generator	
5.29.3	Zwei-Ton-Wobbler	279
5.30	Analog-zu-Digital-Wandler (AD) TL507	279
5.30.1	8-Bit-Analog-zu-Digital-Wandler	280
5.30.2	Pulsbreitenmodulator	281
5.31	8-Bit-Digital / Analog-Wandler DAC 801	
5.31.1	1 6 6 6	
	256-Stufen-Sägezahngenerator	
5.31.3	DAC-801-Tongenerator	284
5.32	$Temperaturs ensor\ und\ justier bare\ Stromquelle\ LM334\ \dots\dots$	
5.32.1	ϵ	
	Stromquelle	
	Referenzspannungsquelle	
	LED-Stromversorgung	
	Sägezahngenerator	
5.32.6	Lichtmesser	287
5.33	125-mW-Verstärker LM386	
	Verstärker mit v = 20	
	Verstärker mit v = 200	
	Verstärker mit Bass-Anhebung	
	Tonalarm	
5.33.5	Verstärker mit hohem Gain	289
5.34	8-Watt-Verstärker LM383 / TDA 2002	
5.34.1		
5.34.2	16-Watt-Brückenverstärker	290
5.35	D. LANGER M. M. L. I. MARGE M. MARGE	201
	Dual-2-Watt-Verstärker LM1877 / LM377	
5.35.1	Stereo-Verstärker	291
5.35.2		291 292

	Komplexer Sound-Generator SN76477N Schlagzeugsynthesizer Rauschgenerator Universeller Generator mit auf-/abschwellendem Ton	293 294
	Komplexer Sound-Generator SN76488N Fliegerbombe mit Explosion Verbesserte Dampfmaschine mit Pfeife Ultimative Sirene	295 296
5.38 5.38.1	Rhythmus-Generator MM5871	
	Dual-Analog-Verzögerungsleitung SAD1024 Serieller Betrieb Ausgangssummierer SAD1024-In/Out-Beschaltung Justierbarer Flanger oder Phaser	300 300 301
5.40 5.40.1 5.40.2	Oktavton-Generator S50240 Justierbarer Oktav-Frequenz-Synthesizer Spezialeffekte	303
5.40.1 5.40.2 5.41 5.41.1 5.41.2	Justierbarer Oktav-Frequenz-Synthesizer Spezialeffekte Optokoppler TIL111 / TIL119 Testschaltung für TIL111 / TIL119	303 304 304 305 305
5.40.1 5.40.2 5.41 5.41.1 5.41.2 5.41.3 5.42	Justierbarer Oktav-Frequenz-Synthesizer Spezialeffekte Optokoppler TIL111 / TIL119 Testschaltung für TIL111 / TIL119 Tastatur-Interface	303 304 304 305 305 306 306 307

1 Grundsätzliche Betrachtungen


Die ersten Seiten dieses Buches dienen der Auffrischung vorhandenen Wissens. Wenn Sie tiefer in die Materie einsteigen wollen, empfehlen wir eine Recherche im Internet oder weiterführende Fachliteratur.

1.1 Widerstände

Widerstände begrenzen den Stromfluss. Ein Widerstand hat genau 1 Ω , wenn bei einer angelegten Spannung von 1 Volt durch ihn ein Strom von 1 Ampere fließt. Dies ist das Ohmsche Gesetz. Mathematisch ausgedrückt:

$$R = \frac{U}{I} \qquad I = \frac{U}{R} \qquad U = R \cdot I$$

Widerstände werden mit Farbringen markiert. Aus der Position und Anzahl der Farbringe lässt sich der Widerstandswert ablesen. Es gibt Widerstände mit 3, 4 und 5 Farbringen. Je mehr Farbringe ein Widerstand hat, desto genauer ist sein Wert und desto geringer im allgemeinen seine Toleranz.

Widerstände mit 3 Farbringen

- 1. und 2. Farbring = Zahlenwerte Widerstand
- 3. Farbring = Multiplikator Toleranz generell 20%

Widerstände mit 4 Farbringen

- 1. und 2. Farbring = Zahlenwerte Widerstand
- 3. Farbring = Multiplikator
- 4. Farbring = Toleranz je nach Farbe

Widerstände mit 5 Farbringen

- 1. 2. und 3. Farbring = Zahlenwerte Widerstand
- 4. Farbring = Multiplikator
- 5. Farbring = Toleranz je nach Farbe

Für Widerstände wird auch folgende alphanumerische Codierung benutzt:

Zahlenwert + Zahlenwert + Multiplikator + Zahlenwert, wobei der Multiplikator die Position der Kommastelle angibt. Als Multiplikatoren dienen die Buchstaben M, k, R, wobei M = 1.000.000; k = 1.000; R = 1. Hier ein paar Beispiele:

```
2k2 = 2.2 \times 1000 = 2.2 \text{ k}\Omega

22M5 = 22.5 \times 1.000.000 = 22.5 \text{ M}\Omega

580R = 580 \Omega

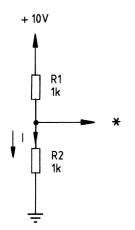
56R5 = 56.5 \Omega

1R1 = 1.1 \Omega

R022 = 0.022 \Omega
```

Widerstände werden nicht nur nach ihrem Widerstandswert unterschieden, sondern auch nach ihrer Belastbarkeit, angegeben in "Watt". Soll ein Widerstand nicht überhitzt werden, muss er die entstehende Wärme über seine Oberfläche an die Umgebung abgeben. Ein kleiner Widerstand kann nicht so viel Energie abgeben wie ein großer. Deshalb gibt es z. B. kleine Widerstände mit $100~\Omega$ und sehr große Widerstände mit $100~\Omega$. Der Widerstandswert ist immer gleich, die Belastbarkeit jedoch unterschiedlich. Je größer die Abmessungen des Widerstandes, desto größer ist im allgemeinen seine Belastbarkeit. Verwenden Sie immer nur Widerstände mit der passenden Belastbarkeit. Diese richtet sich nach der entstehenden Wärmeleistung und berechnet sich wie folgt:

$$P = (U^2) / R$$

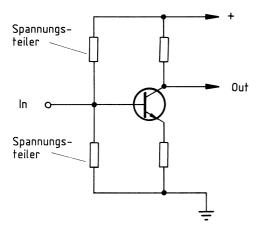

mit P = Leistung in Watt; U = Spannung am Widerstand in Volt (Effektivwert); R = Widerstandswert in Ω .

In der Praxis sollte man die Belastbarkeit von Widerständen immer doppelt so groß wählen wie berechnet. Hat man also einen Widerstand zu 1/2 Watt errechnet, so wählt man für die Schaltung einen Widerstand mit 1 Watt Belastbarkeit. Der Grund: Betreibt

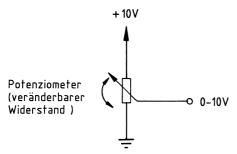
man einen 1/2 Watt Widerstand mit konstant 1/2 Watt, so ist dieser nach einem bis zwei Jahren defekt. Die Ursache ist die langsame Oxidation des Luftsauerstoffs mit dem heißen Widerstandsmaterial. Ist in einer Schaltung kein Widerstandswert angegeben, so kann man üblicherweise 1/4 bis 1/2 Watt-Typen verwenden.

Fast jede elektronische Schaltung verwendet Widerstände. Hier die wichtigsten Anwendungsfälle:

- **1. Strombegrenzung:** Begrenzung des Stromflusses durch LEDs, Transistoren, Lautsprecher, Transformatoren, Drosseln, Akkus usw. Diese Widerstände heißen im allgemeinen Vorwiderstände oder Schutzwiderstände.
- **2. Spannungsteilung:** Eine beliebige Spannung soll um einen bestimmten Faktor verringert werden. Dazu verwendet man die sog. Spannungsteiler-Schaltung.



Die Spannung am Punkt "*" = I × R2. Der Strom I ist der Strom durch R1 und R2.


Also:
$$I = \frac{10 \text{ V}}{(\text{R1} + \text{R2})} = 0,005 \text{ A}$$

Folglich ist die Spannung an "* " = 0.005×1000 = 5 Volt. Der Gesamtwiderstand von R1 und R2 ist einfach die Summe: $R_{\rm ges} = R1 + R2$. Diese Regel erlaubt es, durch Kombination von Standard-Widerstandswerten einen gewünschten nicht standardisierten Widerstandswert zu erzeugen.

Spannungsteiler benützt man zur Vorspannungserzeugung bei Transistoren:

Sie eignen sich auch zur Erzeugung einer variablen Spannung aus einer festen Spannung:

Laden und Entladen von Kondensatoren: Lesen Sie dazu das n\u00e4chste Kapitel \u00fcber Kondensatoren.

1.2 Kondensatoren

Kondensatoren speichern elektrische Energie, sie blockieren Gleichstrom, lassen aber Wechselstrom passieren. Kapazitätswerte werden in "F" angegeben. "1 F" ist jedoch ein sehr großer Wert. In der Praxis haben die meisten Kondensatoren sehr viel kleinere Werte, zum Beispiel:

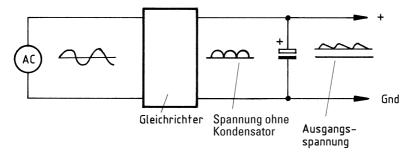
1 microF (
$$\mu$$
F) = 1 × 10⁻⁶ F
1 nanoF (nF) = 1 × 10⁻⁹ F
1 picoF (pF) = 1 × 10⁻¹² F

Die Kapazitätswerte sind bei Kondensatoren meist aufgedruckt. Es gibt zwar auch einen internationalen Farbcode für Kondensatoren, dieser ist jedoch nicht einfach zu handhaben. Viele Hersteller bevorzugen den numerischen Aufdruck. Reine Zahlenwerte von 1 bis 999 bedeuten in der Regel "pF". Zahlen mit Kommastelle bedeuten meist "µF". Einige Hersteller benutzen auch folgenden Code:

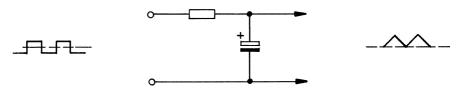
1. und 2. Ziffer = Zahlenwert + 3. Ziffer = Anzahl der Nullen (Wertangabe in pF).

Hier einige Beispiele:

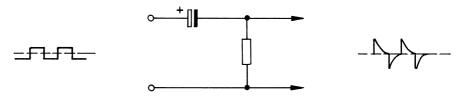
Elektrolytkondensatoren besitzen eine relativ hohe Kapazität (μF) bei kleiner Baugröße. Ihre Anschlüsse sind polarisiert. Sie dürfen nur mit der richtigen Polung betrieben werden. Falsch gepolte Elektrolytkondensatoren können innerhalb von Sekunden defekt werden.

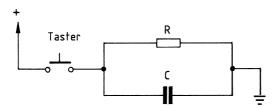


Kondensatoren vertragen Spannungen von wenigen Volt bis zu mehreren tausend Volt. Die Spannungsfestigkeit ist meist aufgedruckt. Verwenden Sie immer nur Kondensatoren mit einer passenden Spannungsfestigkeit (meist das 1,5-fache der Versorgungsspannung der Schaltung).


Warnhinweis: Kondensatoren können über sehr lange Zeit sehr hohe Energien speichern. Diese Energien können auch noch nach Tagen einen tödlichen elektrischen Schlag verursachen oder einen Brand auslösen. Deshalb sollten Kondensatoren, die an Spannungen über 48 Volt verwendet wurden, nach Gebrauch immer über einen 1-k Ω -Widerstand entladen werden. Höchste Vorsicht ist dabei geboten! Benutzen Sie immer nur eine Hand für diesen Vorgang. Legen Sie eine Hand auf den Rücken oder stecken Sie diese in die Hosentasche. So können Sie verhindern, dass beim Entladen ein elektrischer Strom durch ihre Arme über das Herz fließt.

Die wichtigsten Anwendungszwecke für Kondensatoren:


- 1. Unterdrücken von Stromversorgungsspitzen: Ein Kondensator von $0,01...~0,1~\mu F$ über den Versorgungspins von Digital-ICs unterdrückt Störspitzen und verhindert Fehltriggerungen.
- 2. Glätten gleichgerichteter Wechselspannung: Ein Elektrolytkondensator von $100...10000~\mu F$ am Gleichrichterausgang bewirkt eine Glättung der pulsierenden Gleichspannung.

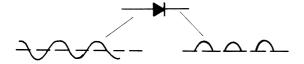

- 3. Blockieren von Gleichstrom bei gleichzeitigem Durchlassen von Wechselstrom.
- Umleiten von Wechselspannung um eine Schaltung herum oder Ableitung nach Masse.
- 5. Ausfiltern von Teilen aus einem veränderlichen Signal.
- 6. Integration eines Signals.

7. Differenzierung eines Signals.

8. Realisierung einer Zeitfunktion

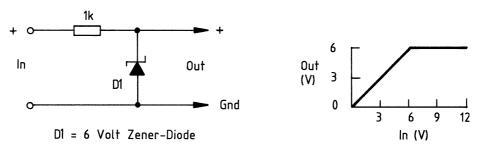
Nach dem Drücken des Tasters lädt sich C schnell auf, nach dem Loslassen erfolgt eine langsame Entladung über R.

- 9. Speichern einer Ladung um einen Transistor ein- bzw. ausgeschaltet zu halten.
- 10. Speichern einer hohen Impuls-Energie für eine Entladungsröhre oder LED.


Kondensatoren besitzen eine hohe Kapazitätstoleranz. Übliche Werte sind 5–20%. Bei Elektrolytkondensatoren sind es noch wesentlich höhere Werte (bis zu 100%). In vielen Fällen ist die Kapazität nicht sehr kritisch für die Funktion einer Schaltung. Ist z. B. in einer Schaltung ein Kondensator mit $0.5~\mu F$ angegeben, so kann man oft den nächstgelegenen Normwert von $0.47~\mu F$ verwenden. Bei Filterschaltungen und Schaltungen mit Zeitgliedern ändern sich jedoch die Kennwerte mit den Kondensatoren, hier müssen die Werte bei Bedarf genau eingehalten werden. "Krumme" Kondensatorwerte erzeugt man durch Parallelschaltung von Kondenatoren, z. B.: $47~\mu F$ // $3.3~\mu F$ ergibt $50.3~\mu F$.

1.3 Halbleiter

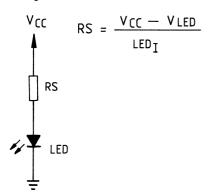
Halbleiter basieren hauptsächlich auf dem Element Silizium. Silizium ist ein sprödes Metall, das elektrisch nicht leitet und das aus Sand gewonnen werden kann. Durch gezielte Verunreinigungen wird es "halbleitend" gemacht. Durch geschickte Kombination verschieden verunreinigter Silizium-Kristalle lassen sich unterschiedliche Halbleiterbausteine herstellen.


1.3.1 Diode

Lässt Strom nur in einer Richtung fließen. In der anderen Richtung wird der Stromfluss gesperrt. Wird benützt, um aus einem Wechselstrom einen Gleichstrom zu erzeugen, oder um einen Strom in eine Schaltung hinein- aber nicht mehr herausfließen zu lassen.

1.3.2 Zenerdiode

Verhält sich wie eine normale Diode, wird jedoch in Sperrrichtung ab einer bestimmten Spannung leitend (= Zenerspannung). Sie kann als Spannungsregulierer verwendet werden. Sobald die Spannung Vin die Zenerspannung überschreitet, leitet die Diode und verhindert einen weiteren Anstieg.



Zenerdioden können auch zum Schutz spannungsempfindlicher Komponenten dienen oder als einfache Referenzspannungsquelle.

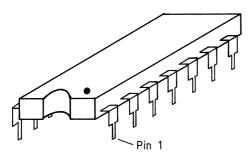
1.3.3 LEDs

Licht emittierende Dioden verhalten sich wie normale Dioden, bei Stromfluss in Durchlassrichtung erzeugen sie jedoch Licht unterschiedlicher Wellenlänge von Infrarot bis Ultraviolett. LEDs müssen immer zusammen mit einem Vorwiderstand verwendet werden, der den Strom durch die LED begrenzt.

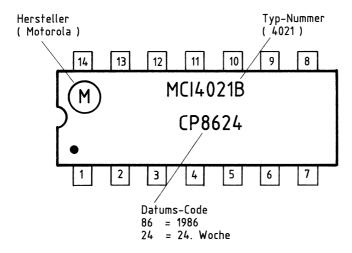
Beispiel:

Die Durchlassspannung einer roten Leuchtdiode beträgt ca. 1,7 Volt, der zulässige Betriebsstrom 20 mA. Um sie an 5 Volt betreiben zu können, müssen 3,3 Volt am Vorwiderstand abfallen und das beim zulässigen LED-Strom.

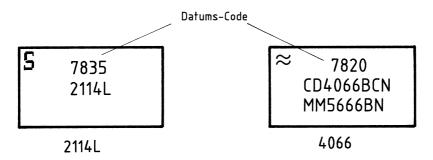
Nach dem Ohmschen Gesetz $R = \frac{U}{I}$ errechnet sich $R = \frac{3.3 \text{ V}}{0.02 \text{ A}} = 165 \Omega$.


Infrarot-LEDs haben einen höheren Wirkungsgrad als LEDs mit sichtbaren Licht. Deshalb und wegen ihrer Unsichtbarkeit werden diese gerne für Signalübertragungen verwendet.

1.3.4 Transistoren


In diesem Buch werden Transistoren nur als einfache Verstärker oder Schalter verwendet. Deshalb können die meisten Universaltypen verwendet werden.

1.3.5 Integrierte Schaltungen


ICs sind aus einer Vielzahl winziger Transistoren auf einem winzigen Chip aufgebaut. Deshalb sind sie auch empfindlich gegenüber Überspannung, Überstrom, Falschpolung und Überhitzung. Beachten Sie die Lage der Pins der Versorgungsspannung. Die meisten ICs werden in Gehäusen mit 8, 14, 16 bis 24 Pins geliefert. Pin 1 ist durch eine Markierung gekennzeichnet (Aussparung, Punkt, Einkerbung).

Wenn das IC so liegt, dass man die Beschriftung aufrecht lesen kann, dann befindet sich Pin 1 links unten bei der Markierung.

Zusätzlich zur IC-Bezeichnung befindet sich eine Reihe weiterer Nummern mit unterschiedlicher Bedeutung auf den ICs.

Unglücklicherweise ist ein Datumscode nicht immer vorhanden oder er ist verschlüsselt oder andere Nummern treten an seine Stelle. Der Datumscode kann auch mit der IC-Nr. vertauscht sein.

Lagern sie ICs immer in antistatischen Behältern oder auf leitfähigem Schaumstoff. Bei Verwendung von nichtleitendem Kunststoff besteht die Gefahr von Aufladung der Kunststoffoberfläche. Diese Ladung kann ICs zerstören oder, noch schlimmer, die Funktionen teilweise beschädigen. Der Baustein hat dann nicht mehr die Herstellerspezifikation und verhält sich nicht wie gewünscht (unerklärliche sporadische Fehlfunktionen).

Frank Sichla

Band 5:

Schaltungssammlung LEDs, LCDs und Lasertechnik

Mit 387 Abbildungen

Vorwort

Jeder kennt sie, die Leucht- oder Lumineszenzdioden (auf Englisch: Light Emitting Diodes, LEDs, Licht emittierende Dioden). Sie sind überall in der modernen Elektronik anzutreffen und für Anzeigezwecke unentbehrlich. Durch beständige Entwicklungsarbeit wurde die Lichtausbeute kontinuierlich erhöht und Weißlicht möglich gemacht, sodass das elektronische Leuchtmittel LED gerade dabei ist, die Lichtbranche zu revolutionieren.

Bevor die Hochleistungs-Lumineszenzdioden kamen, gab es interessante Neuigkeiten aus dem Bereich der kleinen LEDs. Diese zeigten sich auch als Dual-LEDs (Zweifarb-LEDs), kamen mit einer integrierten Blinkerschaltung daher oder begannen endlich, auch blau zu leuchten. Damit war die Basis für die weiße LED geschaffen.

Seit kurzer Zeit sind Leuchtdioden, auf organischer Basis hergestellt, in Displays anzutreffen, welche keine Hintergrundbeleuchtung benötigen. So präsentierte ein führender Messgerätehersteller vor Kurzem das weltweit erste Handmultimeter mit OLED-Display. Und Physikern ist es Anfang 2009 gelungen, die Lichtausbeute der OLEDs so zu steigern, dass sie die von Leuchtstoffröhren übertrifft.

Auch die LCD-Anzeigen (Liquid-Crystal Display, Flüssigkeitskristall-Bildschirm) haben in den letzten Jahren – insbesondere durch die Entwicklung von Flachbildschirmen – einen enormen Aufschwung erlebt. Hier dominiert jetzt die Punktmatrix, und man hat die Wahl zwischen konventionellen Ausführungen (grün) und solchen mit weißen Zeichen auf blauem Grund (mit Hintergrundbeleuchtung).

LCDs finden Verwendung in vielen elektronischen Geräten der Unterhaltungselektronik, aber auch in Messgeräten, Mobiltelefonen, Digitaluhren und Taschenrechnern. Head-up-Displays und Videoprojektoren arbeiten mit dieser Technik.

Hier drei konkrete Beispiele dafür, dass auch die LCD-Entwicklung noch in Schwung ist:

Die EA-eDIP-Serie vereinigt diverse Grafik-LCDs mit integrierter Intelligenz. Neben acht eingebauten Schriften bietet sie eine ganze Reihe ausgefeilter Grafikfunktionen. Die Ansteuerung erfolgt über eine RS-232-, SPI- oder I2C-Schnittstelle. Die Programmierung erfolgt mit hochspracheähnlichen Grafikbefehlen. Die zeitraubende Programmierung von Zeichensätzen und Grafikroutinen erntfällt völlig.

Das Zero-Power-LCD zeigt, was in letzter Zeit bei diesen Bildschirmanzeigen möglich wurde. Es beruht auf einer bistabilen Flüssigkristalltechnik, die ein Bild auch ohne eine angelegte Spannung halten kann. Solche Displays eignen sich hervorragend für batteriebetriebene, tragbare Geräte, die keine große Bildwiederholfrequenz benötigen.

Dank ihrer Reflexionseigenschaften ermöglicht diese Technologie breite Sichtwinkel, hohe Helligkeits- und Kontrastwerte sowie gute Lesbarkeit bei Sonnenlicht.

Die PIC18F87J90-Familie von Microchip vereint neue 8-Bit-Mikrocontroller zur direkten LCD-Ansteuerung. Sie sind die ersten 8-Bit-Controller in Nanowatt-Technologie, die über Echtzeituhr und Kalender sowie eine Schaltung zur Ladezeitmessung verfügen. Die softwaregesteuerte Kontrastregelung des integrierten LCD-Moduls passt den Bildschirm an die unterschiedlichen Licht- oder Temperaturverhältnisse an, und die Nanowatt-Technologie sorgt für einen geringen Leistungsbedarf.

Ständige Weiterentwicklungen gibt es auch in der Lasertechnologie. Heute ist der Laser zu einem bedeutenden Instrument der Industrie, Kommunikation, Wissenschaft und Unterhaltungselektronik geworden.

Die kleinen Laserdioden sind heute schon die mit Abstand am häufigsten benutzten Laserbauelemente und schicken sich an, die Lasertechnik und ihre möglichen Einsatzgebiete genauso zu revolutionieren wie einst die Transistoren die Elektronik. Die Vorteile von Laserdioden sind Kompaktheit, geringe Herstellungskosten, guter Wirkungsgrad und einfache Stromversorgung sowie einfache Modulierbarkeit.

All diese Bauelemente werden auch in Zukunft ständig weiterentwickelt. Weniger spektakulär als die Kreation völlig neuer Varianten verläuft die Verbesserung der Wirkungsgrade und der Darstellungsmöglichkeiten. Auch die Preise werden immer attraktiver, obwohl sie zum Teil schon verblüffend niedrig sind.

Nicht nur der Entwicklungsingenieur ist an einer Schaltungssammlung bewährter und moderner optoelektronischer Lösungen mit LEDs, Displays sowie Laserdioden interessiert, um Zeit zu sparen. Auch den Hobbyelektroniker interessieren solche Schaltungen besonders, da sie sich ideal für den Einstieg in die Elektronik eignen. Deshalb hat der Autor neben aktuellen professionellen auch bewährte einfache Schaltungen aufgenommen und einen großen allgemeinen Praxisteil hinzugefügt.

Ing. Frank Sichla

Те	il A: S	chaltungen mit Leuchtdioden (LEDs) und Siebensegment-Anzeigen	17
1	_	ffe, Definitionen und technische Daten	
	1.1	Strahlungsphysikalische und lichttechnische Größen	
	1.2	Der Lichtstrom	
	1.3	Die Lichtstärke	
	1.4	Die Lichtstärke-Verteilungskurve	
	1.5	Die Beleuchtungsstärke	
	1.6	Die Belichtung	
	1.7	Die Leuchtdichte	
	1.8	Der Halbstreuwinkel	
	1.9	Vorwiderstandsberechnung	
		LED-Flussspannungen	
		Beleuchtungsstärke-Umrechnungen	
		Anschlusslage	
	1.13	Sicherheitshinweis	24
2	Rlink	erschaltungen	25
_	2.1	Einfacher Blinker mit Timer 555	
	2.2	Wechselblinker mit Timer 555	
	2.3	Wechselblinker mit CMOS-IC	
	2.4	CMOS-Wechselblinker mit zwei LEDs	
	2.5	CMOS-Blinker als Auswerteschaltung	
	2.6	"Ruhiger" Blinker mit Transistor	
	2.7	Wechselblinker für Jumbo-LEDs	
	2.8	Dämmerungsblinker mit superhellen LEDs	
	2.9	Alarmblinker mit "Zwischenspurt"	
		Acht LEDs blinken scheinbar zufällig	
		Wechselblinker mit 2 x 20 LEDs	
		Helligkeit schwillt an und ab	
		Helligkeitsabhängiger Blinker	
		Blinkender Weihnachtsstern	
		Blinker mit Zweipol-Oszillator	
	2.13	builker lilit zwerpot-Oszittatoi	ככ
3	Blitze	er/Flasher/Pulser-Schaltungen	36
	3.1	Einstellbarer Blitzer mit Timer 555	
	3 2	Rlitzer mit komnlementären Transistoren	

	3.3	Wechselblitzer mit Timer 555	38
	3.4	Doppel-Blitzlicht für Modellfahrzeuge	39
	3.5	Marathon-Blitzlicht	
	3.6	1,5-V-Blitzer mit vier Transistoren	41
	3.7	Blitzer mit drei Jahren Batterielebensdauer	42
	3.8	Blitzer mit Taktgenerator und CMOS-IC	43
	3.9	Blitzer mit drei Transistoren	43
	3.10	Blitzer mit Unijunction-Transistor	44
	3.11	Dualer 1,5-V-Blitzer	45
	3.12	Sicherheits-Blitzer für Radfahrer oder Jogger	45
	3.13	Flackerschaltung (Feuer-Imitation)	47
	3.14	Wechsel-Flasher mit 1,5 V Betriebsspannung	48
	3.15	Sehr heller 3-V-Blitzer	48
	3.16	Mini-Blitzer mit Druckschalter	49
		Sicherheits-Blinker für Personen	
	3.18	Leuchtturm-Signalgeber	51
		3-V-Transistor-Flasher	
		1,5-V-Flasher mit CMOS-IC	
	3.21	1,5-V-Flasher mit CMOS-IC und FET	54
	3.22	Ultra-stromarmer 3-V-Blitzer	55
		Programmierbarer Flasher in zwei Varianten	
		Der einfachste Blitzer der Welt?	
		Alarmanlagen-Simulator	
		1,5-V-Flasher für weiße LED mit Low-Voltage-Gatter	
		Schneller, portabler Pulser	
		1,5-V-Flasher für weiße LED mit fünf Transistoren	
		Drei-LED-Flasher	
	3.30	Blitzlicht mit dem TPS61054	61
4		icht- und Leuchtbalken/Leuchtband-Schaltungen	63
	4.1	Einfachstes Lauflicht der Welt?	
	4.2	Lauflicht mit vier LEDs	
	4.3	Leistungsfähige Wechsellichtband-Schaltung	65
	4.4	Knight-Rider-Lauflicht für 5 V	
	4.5	Knight-Rider-Lauflicht für 816 V	
	4.6	Knight-Rider-Lauflicht mit CMOS-ICs	
	4.7	Knight-Rider-Lauflicht mit Schweif	
	4.8	Lauflicht mit einem Ringzähler 4017	
	4.9	Lauflicht mit kaskadierten Zählern 4017	
	4.10	Lauflicht mit kaskadierten Schieberegistern	/2
		Lauflicht mit Transistor-Monoflops	
		Mini-Lauflicht mit CMOS-ICs	
		Hin- und Her-Lauflicht mit Schweif	
	4.14	Duale Lichtbandsteuerung	75

	4.16 4.17 4.18 4.19 4.20 4.21 4.22	Lichtband mit Blinkeffekt Intelligentes Blinklicht Blitzlauflicht Doppellauflicht Mikroprozessor zaubert LED-Muster Einfaches Knight-Rider-Lauflicht Stern aus Laufbändern Inkrementelles Lauflicht 555-Lauflicht	. 77 . 79 . 80 . 81 . 81 . 82
_			
5		vechsler-Schaltungen	86
	5.1 5.2	Umschaltender Wechsler mit sieben Farben	
	5.2 5.3	Einstellbarer RGB-Farbwechsler	
	5.4	Farbwechsler ohne Pause	
	5.5	Fading-Farbwechsler	
	5.6	Langsam laufender Farbwechsler	
	5.7	Fading-Farbwechsler mit TTL-IC	
	5.8	Ökonomomische Farbenerkennung	
	5.9	Farbwechsel-Display mit Duo-LEDs	. 94
	5.10		
	5.11	LED-Farbregler	. 96
6	Schal	ltungen mit Blink- und Dual-LEDs	97
•	6.1	Pegelindikator mit Dual-LED	. 97
	6.2	Lauflicht mit Blink-LED	
	6.3	Blink-LED lässt Einfach-LEDs mitblinken	
	0.5		
	6.4		
	6.4 6.5	Kleines Lichtspiel mit Blink-LEDs	100 100
	6.4	Kleines Lichtspiel mit Blink-LEDs	100 100 101
	6.4 6.5 6.6 6.7	Kleines Lichtspiel mit Blink-LEDs Operationsverstärker steuert Blink-LED Blink-LED am TTL-Ausgang CMOS-IC steuert Blink-LED	100 100 101 102
	6.4 6.5 6.6 6.7 6.8	Kleines Lichtspiel mit Blink-LEDs Operationsverstärker steuert Blink-LED Blink-LED am TTL-Ausgang CMOS-IC steuert Blink-LED Blink-LED an über 5 V	100 100 101 102 102
	6.4 6.5 6.6 6.7 6.8 6.9	Kleines Lichtspiel mit Blink-LEDs Operationsverstärker steuert Blink-LED Blink-LED am TTL-Ausgang CMOS-IC steuert Blink-LED Blink-LED an über 5 V Anzeigeschaltung mit zwei Dual-LEDs	100 100 101 102 102 103
	6.4 6.5 6.6 6.7 6.8 6.9 6.10	Kleines Lichtspiel mit Blink-LEDs Operationsverstärker steuert Blink-LED Blink-LED am TTL-Ausgang CMOS-IC steuert Blink-LED Blink-LED an über 5 V Anzeigeschaltung mit zwei Dual-LEDs Einfacher Impulsindikator mit Dual-LED	100 100 101 102 102 103 104
	6.4 6.5 6.6 6.7 6.8 6.9 6.10 6.11	Kleines Lichtspiel mit Blink-LEDs Operationsverstärker steuert Blink-LED Blink-LED am TTL-Ausgang CMOS-IC steuert Blink-LED Blink-LED an über 5 V Anzeigeschaltung mit zwei Dual-LEDs Einfacher Impulsindikator mit Dual-LED Dual-LED an Netzspannung	100 100 101 102 102 103 104 104
	6.4 6.5 6.6 6.7 6.8 6.9 6.10 6.11 6.12	Kleines Lichtspiel mit Blink-LEDs Operationsverstärker steuert Blink-LED Blink-LED am TTL-Ausgang CMOS-IC steuert Blink-LED Blink-LED an über 5 V Anzeigeschaltung mit zwei Dual-LEDs Einfacher Impulsindikator mit Dual-LED Dual-LED an Netzspannung Ein Bauelement – vier Farben	100 100 101 102 102 103 104 104 105
	6.4 6.5 6.6 6.7 6.8 6.9 6.10 6.11 6.12 6.13	Kleines Lichtspiel mit Blink-LEDs Operationsverstärker steuert Blink-LED Blink-LED am TTL-Ausgang CMOS-IC steuert Blink-LED Blink-LED an über 5 V Anzeigeschaltung mit zwei Dual-LEDs Einfacher Impulsindikator mit Dual-LED Dual-LED an Netzspannung Ein Bauelement – vier Farben Magische Lichter	100 100 101 102 103 104 104 105 105
	6.4 6.5 6.6 6.7 6.8 6.9 6.10 6.11 6.12 6.13 6.14	Kleines Lichtspiel mit Blink-LEDs Operationsverstärker steuert Blink-LED Blink-LED am TTL-Ausgang CMOS-IC steuert Blink-LED Blink-LED an über 5 V Anzeigeschaltung mit zwei Dual-LEDs Einfacher Impulsindikator mit Dual-LED Dual-LED an Netzspannung Ein Bauelement – vier Farben Magische Lichter Tester für Audioleitungen	100 101 102 102 103 104 104 105 105
	6.4 6.5 6.6 6.7 6.8 6.9 6.10 6.11 6.12 6.13 6.14 6.15	Kleines Lichtspiel mit Blink-LEDs Operationsverstärker steuert Blink-LED Blink-LED am TTL-Ausgang CMOS-IC steuert Blink-LED Blink-LED an über 5 V Anzeigeschaltung mit zwei Dual-LEDs Einfacher Impulsindikator mit Dual-LED Dual-LED an Netzspannung Ein Bauelement – vier Farben Magische Lichter Tester für Audioleitungen Optischer Transistortester	100 101 102 102 103 104 104 105 105 107
	6.4 6.5 6.6 6.7 6.8 6.9 6.10 6.11 6.12 6.13 6.14 6.15 6.16	Kleines Lichtspiel mit Blink-LEDs Operationsverstärker steuert Blink-LED Blink-LED am TTL-Ausgang CMOS-IC steuert Blink-LED Blink-LED an über 5 V Anzeigeschaltung mit zwei Dual-LEDs Einfacher Impulsindikator mit Dual-LED Dual-LED an Netzspannung Ein Bauelement – vier Farben Magische Lichter Tester für Audioleitungen Optischer Transistortester Steuerschaltung für 16-mm-Duo-LEDs	100 100 101 102 102 103 104 105 105 107 107
	6.4 6.5 6.6 6.7 6.8 6.9 6.10 6.11 6.12 6.13 6.14 6.15 6.16 6.17	Kleines Lichtspiel mit Blink-LEDs Operationsverstärker steuert Blink-LED Blink-LED am TTL-Ausgang CMOS-IC steuert Blink-LED Blink-LED an über 5 V Anzeigeschaltung mit zwei Dual-LEDs Einfacher Impulsindikator mit Dual-LED Dual-LED an Netzspannung Ein Bauelement – vier Farben Magische Lichter Tester für Audioleitungen Optischer Transistortester Steuerschaltung für 16-mm-Duo-LEDs Interessanter Wechselblinker	100 101 102 102 103 104 105 107 107 108 110
	6.4 6.5 6.6 6.7 6.8 6.9 6.10 6.11 6.12 6.13 6.14 6.15 6.16 6.17 6.18	Kleines Lichtspiel mit Blink-LEDs Operationsverstärker steuert Blink-LED Blink-LED am TTL-Ausgang CMOS-IC steuert Blink-LED Blink-LED an über 5 V Anzeigeschaltung mit zwei Dual-LEDs Einfacher Impulsindikator mit Dual-LED Dual-LED an Netzspannung Ein Bauelement – vier Farben Magische Lichter Tester für Audioleitungen Optischer Transistortester Steuerschaltung für 16-mm-Duo-LEDs Interessanter Wechselblinker Blinkender Farbwechsler mit Doppeltimer	100 101 102 102 103 104 105 107 107 108 110
	6.4 6.5 6.6 6.7 6.8 6.9 6.10 6.11 6.12 6.13 6.14 6.15 6.16 6.17 6.18	Kleines Lichtspiel mit Blink-LEDs Operationsverstärker steuert Blink-LED Blink-LED am TTL-Ausgang CMOS-IC steuert Blink-LED Blink-LED an über 5 V Anzeigeschaltung mit zwei Dual-LEDs Einfacher Impulsindikator mit Dual-LED Dual-LED an Netzspannung Ein Bauelement – vier Farben Magische Lichter Tester für Audioleitungen Optischer Transistortester Steuerschaltung für 16-mm-Duo-LEDs Interessanter Wechselblinker	100 101 102 102 103 104 105 107 107 108 110 111

	6.21	Übertemperatur-Indikator	. 112
	6.22	Programmierbare LED	. 113
_		- us 1, W	
7		-, Prüf- und Indikatorschaltungen	. 115
	7.1	Anzeige für Gleich- und Wechselspannung	
	7.2	Balkenanzeige mit Transistoren	
	7.3	Einfacher Spannungsprüfer	
	7.4	Einfache Spannungsüberwachung	. 11/
	7.5	Versorgungsspannungs-Überwachung mit Timer 555	. 118
	7.6	Überwachung eines 12-V-Akkus	. 119
	7.7	VU-Meter mit acht LEDs	
	7.8	Leitungssucher mit Operationsverstärkern	
	7.9	Mini-Leitungssucher mit CMOS-IC	. 122
		Vielseitiger Verdrahtungstester	
		Tester für mehradrige Leitungen	
	7.12	Logiktester mit Operationsverstärkern	. 126
	7.13	Logiktester mit CMOS-ICs	. 126
		Autobatterie-Tester mit Transistoren	
		Indikatoren mit LED-Anzeige	
		Einfaches Stroboskop mit Timer 555	
	7.17	Stroboskop mit CMOS-ICs	129
	7.19	Aussteuerungsanzeige	121
		Passiver LED-Bargraph-Power-Indikator	
		Audio-Clipping-Indikator	
		Dreistufiger Audio-Leistungsindikator	
		Alarm bei zu hoher Geschwindigkeit	
		Auto-Bordspannungs-Indikator	
		Test und Anschlussermittlung von Transistoren	
		Indikation einer Frequenzdifferenz	
		Impuls-Überwachungsschaltung	
		Impulsfrequenz-Detektor	
	7.23	Logiktastkopf für CMOS und TTL	145
		Mobiltelefon-Detektor	
		IR-Fernsteuerungs-Tester	
		Wasser-Füllstandsanzeige	
	7.33	Zweibereichs-Stroboskop	1/10
		Digitester	
		Isolationstester	
		Tastatur-Detektiv	
		Gewitter-Entfernungsmesser	
		Schonender Batterietester	
		Three-State-Indikator	
	7.70	mice state manutor	· 1)4

	7.41	Schalt-Indikator	155
	7.42	Impuls-Fühler	156
	7.43	Logiktester	158
	7.44	Tendenz-Indikator	158
	7.45	Polaritätsanzeige	160
	7.46	Spannungsindikator mit fünf LEDs	160
		Bipolare Pegelanzeige	
		Batterietest ohne Voltmeter	
	7.49	Low-Bat-Indikator mit Shut-Down-Möglichkeit	165
	7.50	Hocheffizienter Low-Bat-Indikator	165
		Tester für hohe Spannungen	
		Oszilloskop für Demonstrationszwecke mit 100 LEDs	
	7.53	LED als Fotodiode	168
		Bargraph-Anzeige am Mikrocontroller	
	7.55	In-Circuit-Transistortester	169
	7.56	Tester für die Kfz-Elektrik	171
		Wasserindikator	
	7.58	LED-VU-Meter ohne Spezial-IC	172
		Universaltester	
		Kfz-Ladekontrolle	
		Nachleuchtende Übersteuerungsanzeige	
		NF-Frequenzanalysator	
	7.63	Dreistufiger Spannungsdetektor	178
	7.64	CPU-Lüfterüberwachung	178
_		1. 16	
8		nerschaltungen	
	8.1	Komplementäre Fading-Schaltung	
	8.2	Drei-LED-Wechseldimmer	
	8.3	Fade-in/out-Schaltung	
	8.4	Digital steuerbarer LED-Dimmer	
	8.5	Logarithmischer digitaler Dimmer	
	8.6	DAC steuert Dimmer-IC	
	8.7	Kopfhörerverstärker steuert Dimmer-IC	186
	8.8	Lineare Helligkeitseinstellung in 64 Schritten	
	8.9	Dimmer mit Transistoren und Operationsverstärkern	
	8.10	Effizienter LED-Betrieb an Schaltregler-IC	189
9	Schal	ltungen für Spiel, Spaß und Unterhaltung	190
-	9.1	Tanzende LEDs	190
	9.2	Lichtspiel-Schaltung	
	9.3	Hypnotisierende LED-Spirale	
	9.4	Münzen-Flipper	
	9.5	Elektronisches Roulette	
	9.6	Elektronisches Glücksrad mit akustischem Effekt	

	9.7	Reaktionszeit-Tester	197
	9.8	Maus im Labyrinth	198
	9.9	Orakel	199
	9.10	Geschicklichkeitssniel	199
	9.11	Taschenflipper "Good Luck"	201
	9.12	Kaffeethermometer	202
	9.13	Müdigkeitstester	
	9.14	LED-Spiel	203
	9.15	Launische LED	
	9.16	Laufender Pfeil	
	9.17	Münzwurf-Imitation mit Berührungssensor	
	9.18	Tanzende Lichter mit Transistoren	
	9.19	Fernbedienungs-Blockierer	
	9.20	"Erster!"-Schaltung	
	9.21	Regenbogen mit 13 LEDs	
	9.22	Quiz-Timer	211
10		ltungen aus der Allgemeinelektronik	
	10.1	LED als Stabilisierungsdiode	213
	10.2	LED-Spannungswandler mit PR4401/4402	
	10.3	Automatisches Nachtlicht mit MOSFETs	
	10.4	Count-Down-Schaltung mit neun LEDs	
	10.5	Berührungssensor mit zwei Transistoren	
	10.6	Berührungssensor mit Tondecorder-IC	
	10.7	LED-Betrieb an 1,5 V	218
	10.8	Einparkhilfe auf IR-Basis	
	10.9	Fünf bis acht LEDs an 1,5 V	
	10.10	Leistungsfähige Konstantstromquelle	221
		Cluster für 24 LEDs	
		Sich aufbauender LED-Pfeil	
		LED-Lampe mit Tast-Flipflop	
		Weiße LED an 1,5 V mit drei Bauteilen	
		Weiße LED an 3 V ohne Spule	
		Weiße LED an 1,5 V ohne Spule	
		Präzise LED-Ansteuerschaltung	
		Zeitschalter mit Count-Down-Anzeige	
		•	
		Elektronischer Tastensatz	
		LED-Umschalter	
		Unterbrechender Umschalter	
		LED-Zeiger	
		Eier-Timer mit blitzender LED	
		Konstantstromquelle für Low-Current-I FDs	
	10.40	Nonstantistroniuuciie lui Euw-Cullelli-LED3))

	10.27	30-Sekunden-Einschaltverzögerung	. 234
	10.28	Schubladen-Überwachungsschaltung	. 234
	10.29	Verzögerte Einschaltung mit Count-Down	. 235
	10.30	Automatisches Nachtlicht mit CMOS-Timer	. 236
	10.31	Sich aufbauender Schriftzug	. 236
	10.32	Versorgung mehrerer LEDs durch Aufwärtswandler	. 238
		LED-Array-Ansteuerung durch FET	
		Weiße LED an 1,5 V mit improvisiertem Trafo	
	10.35	Blaue LED an 3 V	. 240
	10.36	Effizienter LED-Betrieb mit Buck-Konverter	. 240
	10.37	Weiße LED an 1,2 V	. 242
		20 bis 30 LEDs in Reihe an 4,5 V	
	10.39	Buzzer lässt weiße LED leuchten	. 243
		High-Power-LED-Betrieb mit MAX1685	
		High-Power-LED-Betrieb mit LM3404(HV)	
		Weiße LEDs an Spannungen ab 1,8 V	
		LED-Betrieb mit hoher Effizienz	
		Drei weiße LEDs an 3 V	
		Weiße LED effizient an 2,716,5 V	
		Zehn weiße LEDs an 12 V	
		20 LEDs an fünf Mikroprozessor-Ports	
		Netzbetrieb von High-Power-LEDs über Treiber-IC	
		LED in Doppelfunktion als Foto- und Leuchtdiode	
		Geschaltete leuchtende Schrift	
	10.51	Sieben weiße LEDs an 36 V	. 253
		Portabler Betrieb von mindestens acht weißen LEDs	
		Treiber-ICs für weiße LEDs	
		High-Side-Stromfühler sorgt für konstanten LED-Strom	
		Pseudo-Code-Schloss	
		Metronom	
	10.57	LED mit variabler Betriebsspannung	. 258
	10.58	Vier, sechs oder acht LEDs am TPS61042	. 259
		Vier weiße LEDs an 2,7 V	
	10.60	Acht weiße LEDs an 3 V	. 261
11	Schal	ltungen mit Siebensegment-Anzeigen	262
11	11.1	Testschaltung für Siebensegment-Anzeige	
	11.1	Würfel mit drei TTL-ICs	
	11.3	Würfel mit vier CMOS-ICs	
	11.4	Vierstellige LED-Anzeige an Zeitgeber-Baustein	
	11.5	Neunkanalschalter mit Zifferanzeige	265
	11.6	Einfacher "Hallo"-Blinker	
	11.7	Vor- und/oder Rückwärtszähler	
	11.8	Abgastester	
	± ±.0	Angustester	. 20)

	11.9	Zehn-Stufen-Lautstärkeeinsteller	270
		Tester für Gatterschaltungen	
		Punktezähler	
	11.12	High-Low-Tester	275
		Vielseitiger Zähler	
	11.14	Ein Leuchtsegment fährt Karussell	276
	11.15	Punktesammeln	277
		Kontaktloser Netzspannungsindikator	
	11.17	Just-a-Minute-Schaltung	278
	11.18	Zähler von 00 bis 99	279
	11.19	PC-basiertes Siebensegment-Rolling-Display	280
		Tagezähler	
	11.21	Universelles Zählmodul	283
		Standard-Voltmeter mit ICL7106	
	11.23	Multiplexbetrieb mit Mikrocomputer	284
	11.24	Einfache Digitaluhr	286
	11.25	Pegel- und Flankenindikator	287
т.	:ID C-	haltuuraa mittiiniid Constal Disalama (ICDs)	200
ie	II B: 50	haltungen mit Liquid-Crystal Displays (LCDs)	289
1	LCDs i	n Frage und Antwort	291
	1.1	Wie funktioniert ein LCD im Prinzip?	291
	1.2	Wie ist ein LCD aufgebaut?	291
	1.3	Wie verhindert man das Zersetzen der Flüssigkeit?	291
	1.4	Welche Grundtypen gibt es?	291
	1.5	Was zeichnet ein Textdisplay aus?	292
	1.6	Wie kennzeichnet man Textdisplays?	292
	1.7	Was ist ein Grafikdisplay?	292
	1.8	Wie erfolgt die LCD-Ansteuerung?	292
	1.9	Was bedeutet Multiplexbetrieb?	
	1.10	Wie wird die Ansteuerung bewerkstelligt?	
	1.11	Welche Vorteile hat ein On-Board Controller?	
	1.12	Was bedeutet Positiv- und Negativmodus?	
	1.13	Was ist bei LCDs mit Hintergrundbeleuchtung zu beachten?	
	1.14	Gibt es verschiedene Hintergrundbeleuchtungs-Methoden?	
	1.15	Welchen Vorteil haben einfache Displays?	
	1.16	Was versteht man unter einem Passiv-Matrix-Display?	
	1.17	Was versteht man unter einem Aktiv-Matrix-Display?	
	1.18	Welche Vorteile bietet ein Aktiv-Matrix-Display?	
	1.19	Wie verhalten sich Pixel-Anzahl und Diagonale zueinander?	
	1.20	Was sind STN-Displays?	
	1.21	Was ist ein Zero-Power-LCD?	
	1.22	Welche preiswerten LCD-Typen sind derzeit am Markt?	
	1.23	Welche sind die wichtigsten Meilensteine der ICD-Entwicklung?	296

2	Schal	ltungen mit Siebensegment-LCDs	297
	2.1	Grundschaltung für die Ansteuerung	
	2.2	Ansteuerung mit Decoder-IC 4543	
	2.3	Ansteuerung mit Decoder-ICs 4054, 4055 und 4056	300
	2.4	Einfache Zählerschaltung bis 99	302
	2.5	Standard-Voltmeter mit ICL7106	303
	2.6	Logarithmisches Voltmeter mit ICL7106	
	2.7	Druckmesser mit ICL7106	
	2.8	Frequenzesser 020 kHz	
	2.9	Interface für vierstelliges Siebensegment-LCD	
	2.10	Dreistelliger Ultra-Low-Power-Indikator	
	2.11	LCD-Stoppuhr	
		•	
3	Schal	tungen mit LCD-Punktanzeigen	
	3.1	Standardbeschaltung zur Kontrasteinstellung	
	3.2	Einfaches LCD-Interface	
	3.3	Serielles Interface für 2x16-Display	
	3.4	RS-232-zu-LCD-Konverter mit automatischem Zeilenumbruch	
	3.5	LCD-Anzeige am COM-Port	
	3.6	RC5-Fernbedienungstester	
	3.7	Füllstandsmessung mit LCD	
	3.8	Füllstandsanzeige-LCD-Modul mit vielen Möglichkeiten	
	3.9	Kapazitätsmessung mit LCD & PIC	318
		USB-LCD-Interface	
		Steuerschaltung für Hintergrundbeleuchtung	
		LCD-Testboard	
	3.13	USB-LCD-Interface mit CH341A-Modul	322
,	Calaal	ltungen mit Grafik-LCDs	226
4		Consider and Grank-LCDS	324
	4.1	Grundlagen der Ansteuerung	
	4.2	Ansteuerung eines Notebook-LCDs	
	4.3	Grafik-LCD-Betrieb über USB	
	4.4	Ansteuerung von Grafik-LCDs ohne Controller	
	4.5	Signalformdarstellung auf einfache Weise	328
Te	il C: S	chaltungen mit Laserdioden	329
1		technik in Frage und Antwort	
	1.1	Was bedeutet der Begriff Laser?	
	1.2	Was versteht man unter stimulierter Emission?	
	1.3	Wie wird die stimulierte Emission herbeigeführt?	331
	1.4	Welche Stoffe eignen sich als Medium?	
	1.5	Wie kommt die Lichtverstärkung zustande?	
	1.6	Wie erfolgt die Abstrahlung?	332

	1.7	Geht es auch ohne Resonator?	. 332
	1.8	Welche Wellenbereiche sind möglich?	. 332
	1.9	Was unterscheidet Laserquellen von klassischen Lichtquellen?	. 332
	1.10	Was bedeutet Kohärenz?	. 332
	1.11	Was bestimmt die Strahleigenschaften des Lasers?	. 333
	1.12	Was ist ein CW Laser?	. 333
	1.13	Wie funktioniert die Laserdiode?	. 333
	1.14	Wie unterscheiden sich Laserdioden von LEDs?	. 333
	1.15	Warum sind Laserdioden so klein?	. 334
	1.16	Wie erfolgt das Pumpen bei Laserdioden?	. 334
		Was sollte der Praktiker bei Laserdioden beachten?	
	1.18	Wo werden Laser angewandt?	. 334
	1.19	Welche Lichtleistungen werden erzielt?	. 335
	1.20	Wie verlief die Entwicklung der Laser?	. 335
	1.21	Wie gefährlich ist Laserstrahlung?	. 336
2	Schal	ltungen mit Laserdioden	337
	2.1	Grundschaltung der Laserdiode	
	2.2	Leistungsregler für Laserdioden	. 338
	2.3	Laserdiodenbetrieb mit 1,5 V	. 340
	2.4	Experiment zur Nachrichtenübertragung	. 340
	2.5	Stromversorgung mit Konstantstromquelle	. 341
	2.6	Schaltung zur Ausgangsleistungs-Anzeige	
	2.7	Impulsansteuerung für Laserdioden	. 342
	2.8	Treiber- und Überwachungsschaltung	
	2.9	Treiber für vierpoligen Anschluss	. 343
		Betrieb mit Treiber-IC AD9660	
	2.11	20-MHz-Tester für VCSEL-Laserdioden	. 346
	2.12	0,5/5/50-MHz-Tester für GaAlAs-Laserdioden	. 347
	2.13	Leistungsregler mit digitalem Widerstand	. 348
		Einfaches Lasertelefon	
	2.15	Einfacher Laserdiodentreiber	. 351
	2.16	$Laser diodentreiber\ mit\ geringer\ Betriebsspannung\ \ldots \ldots$. 351
St	ichwo	orte	353

Teil A: Schaltungen mit
Leuchtdioden (LEDs)
und SiebensegmentAnzeigen

2 Blinkerschaltungen

Blinker sind typische Einsteigerprojekte: Mit geringem Aufwand und hoher Nachbausicherheit wird ein eindrucksvoller (optischer) Effekt erzeugt. Außerdem eignen sich diese Schaltungen gut, um Erfahrungen beim Dimensionieren zu sammeln. Anhand der Helligkeit und des Schaltverhaltens kann man sofort die Änderung im "Benehmen" der Schaltung erkennen, ein Messgerät ist zunächst nicht erforderlich.

Da billige Elektrolytkondensatoren Toleranzen von –20 % bis +100 % haben können, sind damit entsprechende Abweichungen bei der Frequenz möglich.

2.1 Einfacher Blinker mit Timer 555

Die Schaltung nach *Abb. 2.1* weist keine Besonderheiten auf. Die Gleichheit von R1 und R2 führt allerdings zu einem Impuls-Pause-Verhältnis, das stark von 1 abweicht. Sollen Ein- und Ausschaltzeit etwa gleich sein, so wählt man R2 mit 100 kOhm und C1 mit $10~\mu F$. Das Tastverhältnis (Einschaltzeit / Periodendauer) liegt dann entsprechend bei 0.5.

Bei 9 V Betriebsspannung fließen durch die LED etwa 40 mA. Bei 4,5 V Betriebsspannung geht der LED-Strom auf etwa 10 mA zurück; das Schaltverhalten bleibt gleich. Eine weitere mögliche Änderung ist die Verwendung eines Einstellwiderstands mit Vorwiderstand für R2. Dann lässt sich die Blinkfrequenz einstellen.

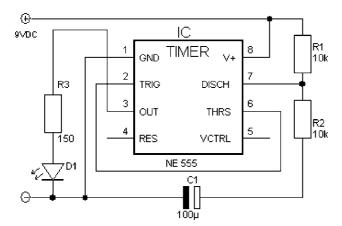


Abb. 2.1: Quelle: René Bader, www.bader-frankfurt.de

2.2 Wechselblinker mit Timer 555

Die Schaltung nach *Abb. 2.2* wirkt gegenüber der eben gezeigten nur größer, weil das Innenleben des Timers (Blockaufbau) mit dargestellt ist. Beschaltet ist der Timer als Standard-Multivibrator mit einem Tastverhältnis von praktisch 0,5. Da der Ausgang jedoch relativ hohe Ströme sowohl liefern (treiben) als auch aufnehmen kann, ist ein Wechselblinker mit dem Timer kein Problem. Abwechselnd blinken die LEDs praktisch mit je folgender Zeit:

Einschaltzeit in ms = $0.7 \times C_t \times R_2$

Einschaltzeit in ms = $0.7 \times 4.7 \mu F \times 220 \text{ kOhm} = 724 \text{ ms}$

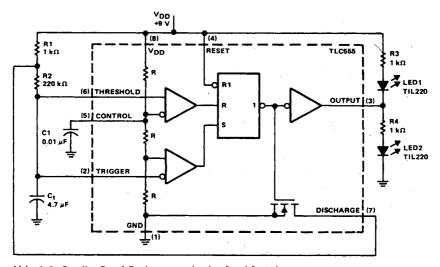


Abb. 2.2: Quelle: René Bader, www.bader-frankfurt.de

2.3 Wechselblinker mit CMOS-IC

Standard-CMOS-Gatter können bei 5 V Betriebsspannung mindestens 5 mA liefern bzw. aufnehmen. Daher lassen sich insbesondere Low-Current-LEDs direkt daran betreiben.

Abb. 2.3 schlägt Möglichkeiten vor. Da ein solches Gatter invertiert, leuchten LED1 und 4 sowie LED2 und 3 gemeinsam. Man kann übrigens CMOS-Gatter des gleichen Schaltkreises parallel schalten und somit den Ausgangsstrom verdoppeln oder verdreifachen. Im 4001 sind ja noch zwei Gatter frei, deren Eingänge bei Nichtbenutzung auf festes Potenzial (Betriebsspannung oder Masse) gehören.

Der Elektrolytkondensator C2 bestimmt die Blinkfrequenz. Direkt an Pin 7 und 14 wird ein Abblockkondensator 10...100 nF gelötet.

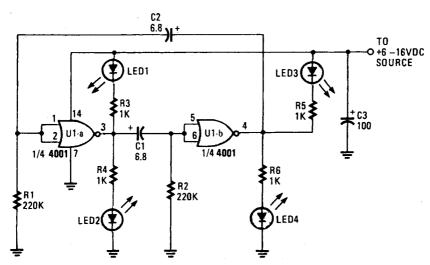


Abb. 2.3: Quelle: Hands-on Electronics

2.4 CMOS-Wechselblinker mit zwei LEDs

In der Schaltung nach *Abb. 2.4* werden Inverter eingesetzt. Man kann einen entsprechenden CMOS- oder TTL-Schaltkreis nutzen. Bei CMOS sind die Eingänge nicht benutzter Gatter auf Betriebsspannungs- oder Massepotenzial zu legen. Ein Abblockkondensator über den Betriebsspannungs-Anschlüssen sollte nicht fehlen.

Bei dieser Multivibratorschaltung entsprechen Ein- und Ausschaltzeit etwa der Zeitkonstante aus R und C. Die Rechnung 10 MOhm x 0,1 μ F ergibt eine Sekunde. Die Schaltung blinkt also wechselseitig mit etwa 0,5 Hz.

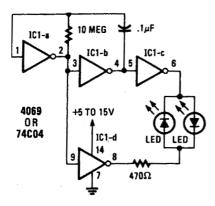


Abb. 2.4

2.5 CMOS-Blinker als Auswerteschaltung

Da CMOS-ICs in einem weiten Betriebsspannungsbereich arbeiten, verwendet man sie gern bei Zusatzschaltungen. Diese lassen sich meist problemlos von der eigentlichen Schaltung mitversorgen.

Ein Beispiel zeigt *Abb. 2.5*. Es handelt sich um einen "intelligenten" optischen Signalgeber. Der Zustand der LED hängt von den an den Eingängen A1 und A2 herrschenden logischen Zuständen ab:

A1	A2	LED
L	L	leuchtet
Н	L	leuchtet
L	Н	aus
Н	Н	blinkt

Der Transistor ist völlig unkritisch. Auch hier bitte einen Abblockkondensator nicht vergessen. Die Betriebsspannung kann höher als 4,5 V sein, dann aber bitte R3 entsprechend erhöhen!

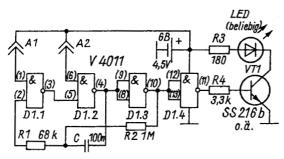


Abb. 2.5

2.6 "Ruhiger" Blinker mit Transistor

Die Ausgangsspannung der Phasenkette im Rückkopplungszweig der Schaltung nach *Abb. 2.6* ist bei einer Phasendrehung von 180° auf 3,4 % abgefallen, sodass der Transistor mit mindestens etwa 30 verstärken muss. Dann ist die Schwingbedingung erfüllt.

Mit R1 lässt sich der Arbeitspunkt so einstellen, dass die Schaltung sicher anschwingt. Wegen der niedrigen Frequenz muss bei dieser Justage der Schleifer sehr langsam bewegt werden.

Wegen der "ruhigen" LED-Betriebsart eignet sich die Schaltung vorteilhaft zur Anzeige normaler Betriebszustände (grüne LED).

Frank Sichla

Band 6:

Schaltungssammlung Mikrocontroller und USB

Mehr als 330 erprobte Schaltungen für Labor, Entwicklung und Anwendung

Vorwort

Mikrocontroller (auch als µController, µC oder MCU für Microcontroller Unit bezeichnet) sind aus der modernen Elektronik nicht mehr wegzudenkende digitale Universalbausteine. Sie vereinen einen Prozessor und mindestens einige Peripheriefunktionen auf einem Chip. In den meisten Fällen befinden sich Arbeits- und Programmspeicher ebenfalls (teilweise oder komplett) auf demselben Chip. Ein Mikrocontroller ist somit praktisch ein Einchip-Computersystem.

Heutige Mikrocontroller bieten häufig komplexe Peripheriefunktionen, wie CAN (Controller Area Network), LIN (Local Interconnect Network), USB (Universal Serial Bus), I²C (Inter-Integrated Circuit), SPI (Serial Peripheral Interface), serielle oder Ethernet-Schnittstellen, PWM-Ausgänge (Pulse Width Modulation), LCD-Controller und -Treiber oder Analog/Digital-Wandler.

Die klassische Mikrocontrollerarchitektur war nicht als reines Mikroprozessorsystem gedacht, sondern primär für Steuerungsaufgaben vorgesehen. Hier ist ein Single-Chip-Betrieb ohne externe Speicherbausteine möglich, und der Befehlssatz der CPU hält meist spezielle Befehle für das Steuern einzelner Signalleitungen (mittels sogenannter Bitmanipulationen) bereit. Weiter zeichnen sich diese Controller durch eine kurze Interrupt-Latenzzeit aus. Typische Vertreter dieser Gattung sind der 8051 von Intel sowie der C166 von Siemens (heute Infineon) und der TriCore von Infineon.

Heute kann man oft beobachten, dass Mikroprozessoren nach einiger Zeit als Mikrocontrollervarianten angeboten werden, sodass für ein funktionsfähiges Prozessorsystem oft nur noch ein Quarz und Speicherbausteine nötig sind. Als typische Vertreter dieser Architektur seien der 80186 von Intel (vom 8086 abgeleitet), die XScale-Familie (ARM) sowie ColdFire (MC680xx) von Freescale (vormals Motorola) genannt.

Der 8085 war der Scheideweg, nach dem sich die Bausteine in reine Datenverarbeiter (Mikroprozessoren, wie die 8086-Familie) und Datenübersetzer (Mikrocontroller, wie 8048 und 8051) als Schnittstelle zwischen Hardware und CPU aufteilten.

Anfangs gab es fast ausschließlich ROM-Speicher (Read Only Memory). Die Software muss mit Entwicklungssystemen erstellt werden, die eine Simulation des Mikrocontrollers erlauben und meist über einen In-Circuit Emulator verfügen. Die Software erhält der Chip im Fertigungsprozess ("Maskenprogrammierung").

Ab der zweiten Hälfte der siebziger Jahre wurden EPROMs (Erasable Programmable) verwendet. Der Programmspeicher wurde mithilfe eines Programmiergeräts beschrieben und konnte durch UV-Licht wieder gelöscht werden. OTP-Mikrocomputer (One Time Programmable, einmal programmierbar) besitzen einen EPROM, aber kein Fenster für UV-Licht.

Neue Mikrocontroller nutzen oft einen Flash-Programmspeicher. Da dieser direkt elektrisch löschbar und wiederbeschreibbar ist, entfällt das Keramikgehäuse, und der Speicher kann im Herstellungsprozess komplett getestet werden.

Ein Mikrocontroller kann extern oder intern getaktet werden. Dabei sind maximale Frequenzen von 1 bis über 100 MHz möglich. Die Taktfrequenz ist jedoch kein verlässliches Maß für die tatsächliche Rechengeschwindigkeit. So wird z. B. bei den meisten 8051-Controllern die Frequenz intern durch 12 geteilt (Maschinentakt). Weiter ist von Bedeutung, wie viele Zyklen (Takte) im Schnitt pro Befehl erforderlich sind.

Mikrocontroller-Speichergrößen liegen zwischen 1 KB (1024 Bytes) und 2 MB (2000 KB) für das Programm (interner RAM, Random Access Memory) und zwischen 32 Bytes und 48 KB für die Daten. Wesentlich größere externe Speicher können oft genutzt werden.

Mikrocontroller werden meist in Assembler oder C programmiert. Im Hobbybereich konnten sich darüber hinaus speziell entworfene Sprachen, wie JAL für die PICmicro-Familie von Mikrochip, etablieren.

Assembler nutzt man bei 4- und 8-Bit-Architekturen, um die Ressourcen effektiv auszuschöpfen. Lässt es die Entwicklungsaufgabe zu, die Ressourcen wenig in Anspruch zu nehmen, ermöglicht C ein sehr hardwarenahes Programmieren in kurzer Zeit.

Relativ neu sind Entwicklungswerkzeuge, die den rein grafischen Softwareentwurf erlauben.

Einige Mikrocontroller, wie der 8052AH-BASIC, haben einen Hochspracheninterpreter integriert. Hier genügt ein Rechner mit einem Terminalprogramm zur Programmierung. Solche Lösungen sind im Hobbybereich wie auch in der industriellen Kleinserienfertigung beliebt.

Das Interesse an Mikrocontrollern ist nach wie vor groß. Die vielfältigsten Aufgaben können damit gelöst werden, wobei es darauf ankommt, den optimal geeigneten Typ zu finden. Das ist nicht einfach, eine ganze Reihe von Kriterien ist zu berücksichtigen, und viele Vor- und Nachteile sind gegeneinander abzuwiegen. Die heute eingesetzten Mikrocontroller bieten zudem eine Mischung aus diversen Techniken und Architekturen (nach Harvard oder von Neumann).

Das vorliegende Buch befreit von der anstrengenden Prozedur der Schaltungsfindung. Es orientiert sich nicht an Prozessortypen, sondern an konkreten Einsatzbeispielen und spiegelt anhand praktischer Anwendungsschaltungen die Einsatzmöglichkeiten aktueller Mikroprozessoren wider. Natürlich wird dabei auch angegeben, woher man den Quellcode beziehen kann.

Ähnlich rasant wie die Mikrocontroller hat der USB (Universal Serial Bus) die Elektronikwelt erobert. Auch hier gibt es heute bereits viele interessante Anwendungsschaltungen.

Der USB ist physikalisch sehr einfach aufgebaut (kompakte Stecker, Punkt-zu-Punkt-Verkabelung, wenige Anschlüsse) und bietet die Möglichkeit, Geräte direkt mit Strom zu versorgen. Dabei können große Datenmengen über ein dünnes Kable transportiert werden. Die Schattenseite dieser überaus positiven Aspekte bei der Anwendung ist eine komplizierte Hardwareentwicklung (wegen der hohen Frequenzen und des sehr komplexen Protokolls mit über 300 Seiten). Da ergibt es ebenso wie bei den Mikroprozessoren Sinn, eine anwendungsorientierte Schaltungssammlung anzubieten.

Ich hoffe, das Buch hilft recht vielen Lesern, Zeit zu sparen, neue Möglichkeiten kennenzulernen und zuverlässige Lösungen zu finden.

Ing. Frank Sichla

1	Grund	dschaltungen	19
	1.1	Oszillator für PIC16/17	
	1.2	RC-Oszillator für PIC16/17	20
	1.3	RC-Watchdog-Aktivierungsschaltung	
	1.4	Mikrocontroller-Oszillator mit LED-Treiber	
	1.5	Mikrocontroller visualisiert Hex-Code	
	1.6	Minimalbeschaltung als Basis-Interpreter	
	1.7	PIC12F675 als Flipflop	
	1.8	Logische Funktionen nachbilden	
	1.9	Einfacher intelligenter A/D-Wandler	
	1.10	PIC in Grundbeschaltung	
	1.11	A/D-Wandler MAX 186 an Mikrocontroller	
	1.12	A/D-Wandler MAX 187 an Mikrocontroller	
	1.13	Mikrocontroller als LCD-Treiber	28
	1.14	Eindrahtkommunikation mit einem PIC	
	1.15	UNI/O-Bus-kompatible serielle EEPROMs am PIC	
	1.16	I ² C-kompatible serielle EEPROMs an PIC10/12	
	1.17	LCD-Modul am PIC	
	1.18	Selbstkalibrierung des internen RC-Oszillators eines PIC	
	1.19	Siebensegment-LED-Anzeigen am PIC	
	1.20	LCD am PIC	
	1.21	Serieller EEPROM am PIC18	
	1.22	A/D-Wandler-Eingangsbeschaltung	
	1.23	Vierstellige Siebensegment-Anzeige am PIC	
	1.24	Beispielbeschaltung für LCD und Keypad	
	1.25	Externe Speicher am PIC	
	1.26	Dual-Speed-RC-Oszillator	
	1.27	Tristate-Ausgang mit einem Pin	
	1.28	Softstart	
	1.29	Start-up Sequencer	
	1.30	Tracking und Proportional-Softstart	
	1.31	Selbststart	
	1.32	DIP-Schalter auslesen	
	1.33	Stromüberwachung mithilfe des A/D-Konverters	
	1.34	Tipps für den PIC-Oszillator	
	1.35	Serielle EEPROMs über drei Leitungen am PIC	49

	1.36	Serielle EEPROMs über zwei Leitungen am PIC10/12	50
	1.37	MSSP-Modul ermöglicht EEPROM-Anschluss am PIC16	
	1.38	PIC16 kommuniziert über I ² C	52
	1.39	SRAM am PIC16	53
	1.40	Serieller EEPROM via I ² C am PIC18	54
	1.41	EEPROM am PIC18 mit Compiler und I ² C	
	1.42	EEPROM via Microwire am PIC18	55
	1.43	Verzögertes Rücksetzen	56
	1.44	Konfiguration des Reset-Pins des MC68HC11	57
	1.45	Serielle Speicher an AVR-Mikrocontrollern	57
2	Progr	rammers und Loaders	59
	2.1	Low-Cost Programmer für PIC16C84	
	2.2	Low-Cost USB-Programmer	
	2.3	Programmierschaltung für AVR-Mikrocontroller	60
	2.4	Programmierungsadapter für AVR-Mikrocontroller	
	2.5	Einfacher PIC-Programmer	63
	2.6	Programmer versorgt sich vom seriellen PC-Port	64
	2.7	"Klassischer" PIC-Programmer	67
	2.8	Parallelport-Programmer für PICs	
	2.9	Einfacher PIC-Programmer	
	2.10	Programmer & Project Board	
	2.11	In-Cirquit Loader für PICs	
	2.12	Ein F84-Programmer	
	2.13	Selbstprogrammierung des PIC18C452	
	2.14	Einfaches Debugger-Terminal	
	2.15	In-System-Programmer	
	2.16	Low-Cost USB-Programmer	
	2.17	In-System-Programmierung von P87LPC76x-Mikrocontrollern	
	2.18	Programmierung des internen oder externen EEPROMs	
	2.19	In-System-Programmierung von AVR-Mikrocontrollern	
	2.20	Einfacher Programmer mit Transistoren	
	2.21	Flash-Programmer	
	2.22	Einfacher PIC-Programmer	83
3	Schu	tz- und Überwachungsschaltungen	
	3.1	Mikrocontroller überwacht Stromversorgung	
	3.2	Mikrocontroller schützt Gleichstrommotor	
	3.3	Mikrocontroller findet Minimal- und Maximalwert	
	3.4	Mikrocontroller steuert vorgeschalteten Komparator	
	3.5	Wiederherstellen der Sicherheit	
	3.6	LED-Stroboskop	91

	3.7	Zugangs-Kontrollsystem	93
	3.8	Nachtlicht mit "Morgen-Signal"	93
	3.9	Digitaler Besucherzähler	
	3.10	Sicherheitsbewusste Türklingel	93
	3.11	Elektronische Alarmanlage	98
	3.12	Brandmeldeanlage	
	3.13	Wasserpegel-Überwachung	98
	3.14	Intelligentes Sicherheitslicht	. 102
	3.15	Keypad universell nutzbar	. 102
	3.16	Alarm bei offener Tür	. 102
	3.17	PIC steuert Nachtlicht	
	3.18	AT89C2051 steuert Nachtlicht	. 105
	3.19	Sicherheitsschloss mit Karte	
	3.20	Kartenleser mit AT90s2313	
	3.21	Füllstandsmelder mit Überlaufalarm	
	3.22	Lichtschranke mit Alarmfunktion	. 109
	3.23	Codeschloss mit LCD	. 109
4		faces und I/O-Schaltungen	
	4.1	Ausgangs-Erweiterung bei PICs	
	4.2	Doppelnutzung (Sharing) von I/O-Pins	
	4.3	Mehrere Schalter an einem Eingang	
	4.4	Zwei LEDs bzw. eine Dual-LED an einem I/O-Port	
	4.5	Sechs LEDs an drei I/O-Ports	
	4.6	Zwölf LEDs an vier I/O-Ports	
	4.7	Zwei Siebensegment-Anzeigen an acht I/O-Ports	. 117
	4.8	Achtfach-Latch ermöglicht Anschluss von sieben	
		Siebensegment-Anzeigen	
	4.9	Optokoppler schützt Ausgang	
	4.10	MIDI am Mikrocontroller	
	4.11	Mikrocontroller multiplext DIP-Schalter am I/O-Port	
	4.12	Drahtloses Mini-Terminal-Interface	
	4.13	RS-232/100-MHz-Desktop-Datenkanal-Adapter	
	4.14	Interface-Testschaltung	
	4.15	Zweidraht-Interface	
	4.16	Mikrocontroller steuert LCD über eine Leitung an	. 126
	4.17	I ² C-Interface verbindet Flashcard mit Mikrocontroller	
	4.18	PIC als I ² C-Peripherie	
	4.19	Sharing von drei A/D-Wandlern	
	4.20	TC7135-Mikrocontroller-Interface	
	4.21	AD7416 via I ² C am PIC	
	4.22	Sechs LEDs an drei PIC-Pins	. 132

	4.23	Mehrere Tasten mit einem Eingang abfragen	132
	4.24	Abfrage mehrerer Taster und Beenden des Sleep-Zustands	
	4.25	4x4-Keyboard an einem Eingang	
	4.26	Tasterdecodierung und ID Settlings	
	4.27	Versorgungsspannung und Daten über eine Leitung	
	4.28	Ausgangserweiterung mit RC-Glied	
	4.29	Ein/Aus und Anzeigeumschaltung mit nur einem Schalter	
	4.30	Bargraph-Ansteuerung über eine Leitung	
	4.31	Mehr Ausgänge durch Schieberegister	
	4.32	Keypad-Interface mit nur zwei Leitungen	141
	4.33	Siebensegment-LCD-Ansteuerung über zwei Leitungen	142
	4.34	M68HC11 an PSD-Systemen	
	4.35	Mikrocontroller mit Keypad, LEDs und LED-Display	146
	4.36	AVR-Mikrocontroller treibt direkt LCD	148
	4.37	Keypad mit Aufwachfunktion	148
	4.38	LCD über Zweidrahtverbindung am Mikrocontroller	149
5	Mess	technik-Anwendungen	
	5.1	Temperatursensor-Anschluss an PIC16 via I ² C	
	5.2	Frequenzzähler	
	5.3	Datenlogger mit PIC16F876	
	5.4	Datenlogger mit AT89C4051	
	5.5	1-kHz-Sinusgenerator	
	5.6	LC-Meter	
	5.7	LC-Meter mit dem ATtiny861	
	5.8	LC-Bestimmung durch Resonanzfrequenz-Messung	
	5.9	30-MHz-Frequenzmesser	
	5.10	Frequenzmesser und Impulsgenerator	
	5.11	Digitaler HF-Feldstärke-Indikator	
	5.12	Breitbandiger HF-Feldstärke-Indikator	
	5.13	Höhenmesser	
	5.14	Lichtmessung mit LED	
	5.15	PIC treibt 20-LED-Anzeige	
	5.16	Frequenzzähler mit PIC	
	5.17	Brücken-Messschaltung nutzt PIC	
	5.18	Widerstands- und Kapazitätsmessung mit PIC	
	5.19	XY-Neigungsdetektor mit PIC	
	5.20	Hochwertige Brückenelektronik mit PIC	
	5.21	A/D-Wandler MCP3201 am PIC	
	5.22	Temperaturmessung mit dem Watchdog Timer	
	5.23	Temperatursensor MCP9700 am PIC	
	5 24	Temperatursensor MCP9800 am PIC	177

	5.25	Dreistelliger Zähler bis 5 MHz	. 177
	5.26	Mini-Zähler mit Offset	
	5.27	Universelle Frequenzanzeige	
	5.28	Temperaturmessung mithilfe der PIC-CTMU	. 181
	5.29	Vierkanal-Digitalvoltmeter bzw. Keypad-Abfrage	
	5.30	Ultraschall-Entfernungsmesser	
	5.31	Thermistor-Thermometer mit LCD	. 187
	5.32	Mini-Logger	. 187
	5.33	Entfernungsmesser	. 190
	5.34	Sechsstelliger 2,5-GHz-Zähler	
	5.35	Wattmeter für die Funktechnik	
	5.36	50-MHz-Zähler/Spannungsmesser/Bargraph-Indikator	. 192
	5.37	MAX186/188 an Mikrocontrollern	. 195
	5.38	Sensorbetrieb nach der Charge-Balancing-Methode	. 196
	5.39	Sensorbetrieb nach der A/D-Methode	. 196
	5.40	Delta-Sigma-Konverter	. 197
	5.41	Mehr Delta-Sigma-Konverter	. 198
	5.42	Vierkanal-8-Bit-A/D-Wandler am PIC	. 201
	5.43	Spannungs-Pulsweiten-Konvertet	. 201
	5.44	20-LED-Punkt-/Balkenanzeige	. 204
	5.45	LCD-Betrieb über nur eine Leitung	. 204
	5.46	Zweistelliges Digitalvoltmeter	. 206
	5.47	Temperatur-Fernmessung mit Quarz	. 207
	5.48	Drehzahlmesser mit wenig Aufwand	. 209
	5.49	Eindraht-Temperaturlogger	. 210
	5.50	ADC MAX1169 am PIC	. 210
	5.51	6-Bit-Analog/Digital-Wandler mit 8-Bit-AVR-Mikrocontroller	. 212
	5.52	8-Bit-Analog/Digital-Wandler mit 8-Bit-AVR-Mikrocontroller	. 212
	5.53	2,5-GHz-Frequenzmesser	. 213
6	Digita	al Signal Processing: Signalerzeugung	215
	6.1	DSP mit dem PIC16C74	. 215
	6.2	Treiber für Horn/Hupe	. 215
	6.3	Generierung eines frequenzmodulierten Signals	. 217
	6.4	Rechteckgenerator mit PIC16C84	. 219
	6.5	Funktionsgenerator auf 68HC11-Basis	. 219
	6.6	Tonerzeugung mit PIC17C42	. 219
	6.7	MIDI-Generator	. 221
	6.8	PAL-Color-Balkengenerator	. 221
	6.9	Rauscherzeugung mit PIC	. 224
	6.10	Kostengünstiger Sinusgenerator	
	6.11	Numerically-Controlled Oscillator mit Mikrocontroller	. 225

	6.12	Mikrocontroller produziert musikalische Töne	
	6.13	DTMF-Sinusgenerator	
	6.14	Implementierung eines DTMF-Generators	. 227
7	Digita	al Signal Processing: Signalverarbeitung	229
	7.1	LTC1296 am Mikrocontroller	. 229
	7.2	LTC1090/1290 am 8051	. 229
	7.3	LTC1090/1290 am MC68HC05C4	. 230
	7.4	LTC1090/1290 am HD63705	. 230
	7.5	LTC1091/1291 am 8051	. 231
	7.6	LTC1091/1291 am MC68HC05C4	. 231
	7.7	LTC1095 am 8051	. 232
	7.8	LTC1095 am MC68HC05C4	
	7.9	LTC1282 am TMS320C25	
	7.10	LTC1272/1273/1275/1276 am TMS320C25	
	7.11	LTC1278 am TMS320C25	
	7.12	12-Bit-Datenerfassung mit Differenzeingang	
	7.13	ADC12038 an verschiedenen Mikrocontrollern	
	7.14	SPI für 68HC11/ADC12038	
	7.15	ADC MCP3201 am 8051	
	7.16	Audiosystem mit vier Ein- und neun Ausgängen	. 240
8	Steue	ern und Regeln	242
•	8.1	Mikrocontroller mit Timerfunktion	
	8.2	Dualer Timer mit vier Ausgängen	
	8.3	IR-Fernsteuerungs-Repeater	
	8.4	Flankengetriggerter Timer mit vier Ausgängen	
	8.5	Garten-Timer	
	8.6	Beleuchtungssteuerung per Fernbedienung	. 247
	8.7	Universeller RC5/RC6-Sender/Empfänger	
	8.8	Fernbedienungs-Code-Tester	. 250
	8.9	Eigenbau-IR-Fernsteuerung	. 252
	8.10	Infrarot-Fernsteuerung	. 253
	8.11	300-MHz-Funkübertragung	. 255
	8.12	Mikrocontroller steuert Lüfter bei Netzversorgung	. 255
	8.13	Mikrocontroller steuert DC/DC-Spannungsquelle	
	8.14	Mikrocontroller steuert DC/DC-Stromquelle	
	8.15	Infrarot-Fernsteuerempfänger mit PIC	
	8.16	Konstantstrom-LED-Treiber	. 260
	8.17	Schrittmotor-Feinsteuerung	
	8.18	Ansteuerung eines Kommutatormotors	. 264
	8 1 9	Servermotor-Applikation mit PIC	265

	8.20	Infrarot-Fernsteuerung steuert Roboter	267
	8.21	Raumtemperaturregelung	
	8.22	Fernsteuerungs-Display	268
	8.23	Real-Time Controller	268
	8.24	Schrittmotor-Treiber	
	8.25	Infrarot-Fernsteuerempfänger für Media Centers	272
	8.26	RF-Zweikanal-Fernsteuerung: Sender	272
	8.27	RF-Zweikanal-Fernsteuerung: Empfänger	274
	8.28	Unidirektionale Motorsteuerung	276
	8.29	Bidirektionale Motorsteuerung	
	8.30	Steuerung eines Modellmotors	277
	8.31	Preiswerte Thermostatregelung	280
	8.32	Beleuchtungsregelung mit LED als Sensor	280
	8.33	Stromschleife mit Überwachung	281
	8.34	Quasi-Analogausgang für Mikrocontroller	
	8.35	Mikrocontroller als digitaler Thermostat	283
	8.36	Zentralheizungs-Steuerung	285
	8.37	Sender für IR-Fernsteuerung	285
	8.38	Mikrocontroller steuert Discolicht	285
9		und das	
	9.1	Power-down-Betrieb ohne Datenverlust	
	9.2	Mikrocontroller generiert Burst-Signal	
	9.3	Nicht benötigte Pins sinnvoll nutzen	
	9.4	Mikrocontroller wird multifunktional	
	9.5	Rauscherzeugung mit einem PIC	
	9.7	Erzeugung eines Sinussignals	
	9.8	Stabiler VCO mit 8-Pin-Mikrocontroller	
	9.9	Kabeltester – schnell und einfach	
	9.10	Preiswerter Sinusgenerator	
	9.11	Mikrocontroller generiert musikalische Töne	
	9.12	Frequenzmultiplizierer x 27	
	9.13	Uhr mit geringem Aufwand	
	9.14	Kleiner FM-Stereosender	
	9.15	Elektronischer Würfel	
	9.16	Automatische Pflanzenbewässerung	
	9.17	Elektronische Quiz-Anzeigeschaltung	
	9.18	Ziffernblock mit Musik	306
	9.19	Zahlenraten	
	9.20	Mehrmuster-Lauflicht	308
			308 309

9.23	High-Power-IR-LED-Treiber mit PIC16	311
9.24	Uhr mit LED-Anzeige	
9.25	Digitaluhr zeigt auch Temperatur	312
9.26	Nutzung des kapazitiven Sensormoduls des PIC16F72X	314
9.27	Kapazitiver Sensor mit PIC10F	
9.28	LED-Dekoration	316
9.29	8048 Spy	316
9.30	Solar Recorder	
9.31	Erzeugung einer hohen Spannung	320
9.32	Abschaltung externer Baugruppen	
9.33	CPU-Core-Versorgung mit externer Quelle	320
9.34	Spannungsteiler für geringen Stromverbrauch	322
9.35	LCD-Kontrasteinstellung mit Buck-Regler	323
9.36	LCD-Kontrasteinstellung mit Boost-Regler	324
9.37	LCD-Kontrasteinstellung per Software/PWM	325
9.38	Kreditkartenleser mit einem PIC	326
9.39	Nutzung des Wake-up-Moduls	326
9.40	PIC steuert Low-Power-Uhr	327
9.41	Decodierung von IR-Fernsteuersignalen	328
9.42	Power Management für PIC18	
9.43	PIC an der analogen Telefonleitung	330
9.44	Einfacher externer Timer	
9.45	Mehr Interrupt-Signale verarbeiten	333
9.46	Programmierbare Tastverhältnisänderung	334
9.47	Echo-Simulator	334
9.48	PIC-MCLR-Pin als Ausgang nutzen	
9.49	Regenbogen-LED als Spannungsindikator	335
9.50	Wirkungsvolle Reset-Schaltungen	
9.51	Mikrocontroller-Versorgung mit kleiner Spannung	
9.52	Nutzung eines Mikrocontrollers für DMX512	339
9.53	Real Time Clock mit geringer Stromaufnahme	341
9.54	Langwellenempfänger mit Datenanzeige	342
10 USB-	Anwendungen	346
10.1	5-V-USB-Spannungsregler	
10.2	USB liefert Ladestrom	346
10.3	Vereinfachte Akkuladung über den USB	349
10.4	In-System-Ladung über den USB	
10.5	USB-Maus-Translator	352
10.6	USB Game Pad Translator	
10.7	Flexible Spannung und hoher Strom aus dem USB	353
10.8	Multiplexbetrieb auch bei niedriger Spannung	355

10.9	Li-lon/Li-Polymer-Batterieladung über den USB
10.10	USB-Drucker-Umschalter 358
10.11	Adapter USB/CAT (CI-V)
10.12	Achtkanal-Messsystem mit 16 Bit Auflösung 360
10.13	Baugruppenversorgung über den USB
10.14	USB-Peripherie mit I ² C-Interface
10.15	USB-Spannungserzeugung mit Schutzschaltung 364
10.16	Einfacher UART-zu-USB-Konverter
10.17	Versorgung eines High-Speed USB-Controllers
10.18	Isolierter USB
10.19	Erweiterung von Applikationen mit dem USB
10.20	USB Peripheral Controller mit Full/Half-Duplex
10.21	MAX3420E wird vom USB versorgt
10.22	MAX3420E wird vom System versorgt

1 Grundschaltungen

1.1 Oszillator für PIC16/17

Der Oszillator ist ein wichtiger Teil jedes Mikrocontrollers. Die in *Abb. 1.1* gezeigte Schaltung ist ein typischer Pierce-Oszillator. Dabei wird die Parallelresonanz des Quarzes genutzt. Der Quarz liegt direkt am Eingang eines invertierenden Verstärkers. Die weitere externe Beschaltung beschränkt sich auf zwei Kondensatoren und einen Widerstand. Die Auswahl wird von verschiedenen Faktoren bestimmt.

Der Hersteller gibt die Quarzfrequenz für den Parallelresonanzfall mit einer äußeren Kapazität von 20...32 pF an. Diese hat kaum Einfluss auf die Frequenz, da das L/C-Verhältnis im Quarz-Ersatzschaltbild äußerst gering ist. Je höher man die Taktfrequenz wählt, umso geringer muss die Anlaufzeit des Oszillators sein, und um so höher ist der Stromverbrauch.

Die Werte von C1 und C2 sollten die vom Hersteller genannte Kapazität berücksichtigen. Es sind also möglichst geringe Werte anzustreben, die aber noch sichere Funktion einschließlich schnellem Anschwingen gewährleisten. Für kurze Anlaufzeit sollte C2 größer als C1 sein.

Der Widerstand R_s reduziert die Quarzbelastung. Er darf aber für gute Funktion nicht größer sein als wenige Kiloohm.

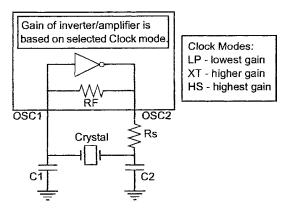


Abb. 1.1: Quelle: Dan Matthews, Basic PIC16/17 Oscillator Design

Das Signal am Ausgang OSCOUT sollte bei guter Sinusform einen Spitze-Spitze-Wert nahe der Betriebsspannung aufweisen.

1.2 RC-Oszillator für PIC16/17

Eine RC-Oszillatorbeschaltung für PICs ist möglich, einfach und gestattet es, die Frequenz durch Änderung des Widerstandswerts einzustellen oder zu steuern. Man benötigt allerdings einen (freien) I/O-Port. Die Beschaltung zeigt *Abb. 1.2*. Die Frequenz wird im Wesentlichen durch C1 und R2 bestimmt. Ist eine Einstellung erwünscht – geringe Frequenz für geringen Stromverbrauch, hohe Frequenz für schnelle Rechenergebnisse – und gelingt sie über R1, sollte man diesen Widerstand nutzen, da er dynamisch an Masse liegt. Eine elektronische Umschaltung gelingt über an Pin OSC1 geschaltete zusätzliche Widerstände, die andererseits an Tristate-Ausgängen liegen (hochohmig: nur R1 wirksam, H-Pegel: R1 und Zusatzwiderstand parallel wirksam, L-Pegel verboten).

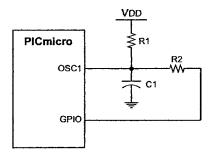


Abb. 1.2: Quelle: Dan Matthews, Basic PIC16/17 Oscillator Design

1.3 RC-Watchdog-Aktivierungsschaltung

Der Watchdog Timer ist ein sehr hilfreicher Bestandteil eines Mikrocontrollers. Er holt ihn beispielsweise aus dem Schlaf-Modus oder sichert den Code. Es gibt aber Applikationen, da stört sein Stromverbrauch. Wenn der Mikrocontroller einen Komparator besitzt, kann man mithilfe einer externen RC-Beschaltung eine Aktivierungsschaltung für den Watchdog realisieren (*Abb. 1.3*). Man fügt die Bauelemente hinzu und programmiert eine Ansprechschwelle. Dann schließt man den Kondensator kurz und geht in den Sleep Mode. Wenn sich der Kondensator über R3 auf die Ansprechschwelle aufgeladen hat, schaltet der Komparator um und generiert ein Interrupt-Signal, welches das Programm aktiviert. Die Aufwach-Prozedur:

- Komparator-Minuseingang als digitalen Ausgang setzen
- 0 schreiben, um Kondensator zu entladen
- Komparatoreingang rücksetzen

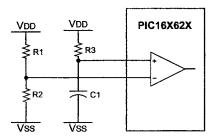
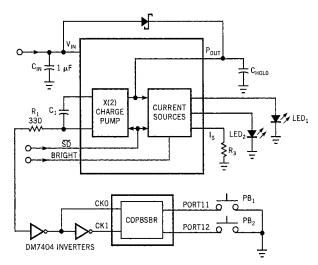



Abb. 1.3: Quelle: Dan Matthews, Basic PIC16/17 Oscillator Design

- Komparator-Zustandsflag lesen, um sie auf 0 zu setzen
- Komparatoreingang aktivieren
- Sleep-Zustand setzen

1.4 Mikrocontroller-Oszillator mit LED-Treiber

Ein Treiber für weiße LEDs besteht im Wesentlichen aus einem Oszillator, einer Ladungspumpe und einer Konstantstromquelle. Ein Beispiel ist der hochintegrierte Baustein LM2791/2. Wenn ein solcher IC im Zusammenhang mit einem Mikrocontroller genutzt werden soll, dann kann man in Erwägung ziehen, aus ihm den Takt für den Controller abzuleiten. Grundlage ist die Tatsache, dass über dem externen Kondensator für die Ladungspumpe eine Dreieck- bis Rechteckspannung auftritt. Wie in *Abb. 1.4* gezeigt, kann man hier über einen Widerstand Gatter anschließen, um den Takt für den Mikrocontroller zu erhöhen (Verdopplung) und mit genügend steilen Flanken anzubieten.

Abb. 1.4: Quelle: Wallace Ly, LED driver provides oscillator for microcontroller, EDN September 16, 2004

1.5 Mikrocontroller visualisiert Hex-Code

Die Schaltung nach *Abb. 1.5* zeigt die prinzipielle Anschaltung von Siebensegment-Anzeigen an einen Mikrocontroller. Auf diese Weise können beispielsweise auch Datenwörter im hexadezimalen System 1-2-4-8 in das Zehnersystem übersetzt und angezeigt werden. Das gelingt ohne weiteren Aufwand (Mikrocontroller) nur für die Ziffern 0...9. Der Mikrocontroller setzt hier den Hex-Code in den BCD-Code um, der auf die Treibereingänge A bis D gelangt. Die Einerstellen liegen an den Ausgängen A0 bis A3, die Zehnerstellen an A4 bis A7.

Das Programm ist unter www.ednmag.com über Search Databases im Software Center als Design Idea 2518 abrufbar.

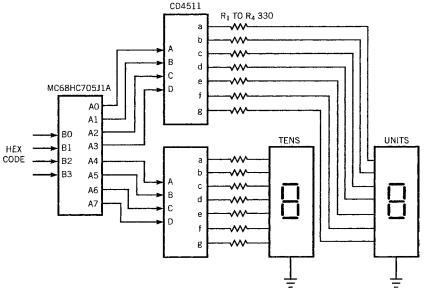


Abb. 1.5: Quelle: Abel Raynus, μC visualizes hex code, EDN April 27, 2000

1.6 Minimalbeschaltung als Basis-Interpreter

In *Abb. 1.6* ist die Minimalbeschaltung für einen sehr kleinen Basic-Interpreter zum begrenzten Debugging sowie für Anzeige und Kontrollzwecke (Monitoring und Control) zu sehen. Der Interpreter nutzt lediglich den On-Chip-RAM des Mikrocontrollers.

Die Software wird in verschiedenen Varianten bereitgestellt. Diese Firmware ist lauffähig auf einem Atmel ATTiny2313 mit 4, 8, 10, 16 oder 20 MHz Taktfrequenz oder auf einem AT90S2313 mit 4-MHz-Takt.

Frank Sichla

Band 7:

Schaltungssammlung Mess- und Prüftechnik

Über 550 erprobte Schaltungen für Labor, Entwicklung und Anwendung

Mit 1196 Abbildungen

Vorwort

Obwohl in der Elektronik immer mehr Aufgaben softwaremäßig gelöst werden können, sodass es heute beispielsweise den fast vollständig auf Software basierenden Empfänger (software defined radio) gibt, benötigen viele Elektronikingenieure, Techniker, Studierende, Auszubildende sowie Hobbyisten in erster Linie konventionelle Schaltungslösungen. In moderner Form zeigen sich diese oft als Applikationsbeispiele aktueller ICs. Aber auch Anwendungen auf Basis diskreter Halbleiter, bewährter universeller Bausteine, wie Operationsverstärker und CMOS-ICs, oder schon etablierter Spezialschaltkreise haben nach wie vor Konjunktur.

Allerdings: Jahr für Jahr wächst die Zahl interessanter praktischer Schaltungen, obwohl ein Teil der bekannten Lösungen durch neue Entwicklungen hinfällig wird. Ein Beispiel hierfür sind Datenlogger, welche Schaltungen zur Langzeiterfassung von Größen wie Temperatur, Strom- oder Lichtstärke überflüssig machen.

Eine systematisch geordnete und dem Stand der Technik angepasste Schaltungssammlung hat daher nach wie vor ihre Berechtigung. Der Inhalt dieses Buches wurde sorgfältig unter den Aspekten Aktualität, Nützlichkeit und Nachbausicherheit zusammengestellt. Neben hochmodernen Lösungen finden sich auch einige "Oldies but Goodies". Insgesamt sind über 550 Schaltungen zusammengekommen.

Sie wurden thematisch in 15 Kapitel geordnet. In manchen Fällen gab es mehrere Möglichkeiten der Zuordnung. Wenn Sie daher auf der Suche nach einer bestimmten Schaltungslösung sind, sollten Sie also nicht gleich nach dem ersten passenden Kapitel Halt machen, sondern prüfen, ob die Schaltung auch in andere Kapitel einzuordnen wäre. Ein Stichwortverzeichnis finden Sie am Schluss des Buches.

Inhalt

1	Messi	ing elektrischer Gleichgroßen	
	1.1	Gleichspannungsmessung mit dem ICL7136	19
	1.2	Leistungsarme Strommessung mit Zeigerinstrument	21
	1.3	Strommessung mit Instrumentationsverstärkern	22
	1.4	Interface zur Gleichspannungsmessung mit dem PC	25
	1.5	A/D-Wandler misst Spannungen bis 1000 V	26
	1.6	Schutzschaltungen für Strommess-ICs	28
	1.7	Strommess-ICs an hoher Betriebsspannung	29
	1.8	Bidirektionale Motorstrommessung	30
	1.9	Kurzschlussschutz für Strommess-ICs	31
	1.10	Strommmess-IC-Überstromschutz mit Latching	32
	1.11	High-Side-Strommess-IC an hoher Spannung	33
	1.12	Bidirektionale Strommessschaltung	34
	1.13	Einfache Stromanzeige-Schaltung	35
	1.14	Einfacher bidirektionaler Strommonitor	36
	1.15	Strommessschaltung für 100 pA bis 100 μ A	37
	1.16	High-Side-Strommessung mit Speisespannung als Referenz	37
	1.17	Präzise Low-Side-Strommessung	39
	1.18	Messung des Stroms aus Quelle mit negativer Spannung	40
	1.19	Strommesser mit Digitalanzeige	41
	1.20	Strommess-IC versorgt sich selbst aus Stromschleife	42
	1.21	Low-Cost-Strommessschaltung	42
	1.22	Strommessungen mit LTC1392	42
	1.23	Gleichspannungsmessung mit UTI	
	1.24	Strommessung an Spannungen bis 1 kV	44
	1.25	High-Side-Strommessung an hoher Spannung	47
	1.26	Einfaches zweistelliges Voltmeter	48
	1.27	Messung kleiner Ströme	49
	1.28	Pikoamperemeter	49
	1.29	Voltmeter mit extrem hohem Eingangswiderstand	50
2	Messi	ung niederfrequenter Spannungen	52
_	2.1	Driftarmer Spitzendetektor	
	2.2	Präzise arbeitender Vollwellen-Gleichrichter	

	2.3	RMS-zu-DC-Konverter	53
	2.4	Präziser Spitzendetektor	
	2.5	Einfacher 80-dB-Verstärker	
	2.6	Ausgangsverstärker für hochauflösende D/A-Wandler	
	2.7	Messung von Audiosignalen	
	2.8	Lautstärke-Anzeige	
	2.9	Aktive Vollwellen-Gleichrichter	
	2.10	Diodenloser Vollwellen-Gleichrichter	
	2.10	Verbesserter passiver Gleichrichter	
	2.11	Messung des echten Effektivwerts der Netzspannung	
	2.12	Messung des echten Effektivwerts sehr keiner Spannungen	
3	Moss	ung hochfrequenter Spannungen	67
)		merkung	
	3.1	Messung des echten Effektivwerts mit LTC12968	
	3.2		
		Messachaltungen mit ADS13x und ADC	
	3.3	Messschaltungen mit AD813x und ADC	
	3.4	Präziser Gleichrichter für HF	
	3.5	Spannungsmessung mit TruPwr Detection IC	
	3.6	HF-Tastkopf bis 2,5 GHz	
	3.7	Weitbereichs-RMS-Spannungsmesser	
	3.8	Empfindliches HF-Voltmeter	79
4	Mess	ung von Leistungen	
	4.1	Quadrierer	
	4.2	Leistungsmessung im Gigahertzbereich	
	4.3	Leistungsmessung mit Log Amp/Detector	83
	4.4	RMS-Leistungsmesser mit hohem Dynamikbereich	87
	4.5	HF-Pegelmessung mit Demodulating Logarithmic Amlifiers	87
	4.6	NF-Pegelmessung mit Demodulating Logarithmic Amlifiers	92
	4.7	Spitzenleistungsmessung im Gigahertzbereich	96
	4.8	Pegelmessung im Gigahertzbereich	98
	4.9	RMS-Leistungsmessung im Gigahertzbereich	99
	4.10	Genauer linearer Leistungsmesser	101
	4.11	Selektiver Leistungsmesser mit 120 dB Dynamik	101
	4.12	Pegelmessung –70 bis +20 dBm bis 500 MHz	
	4.13	Pegelmessung –30 bis +60 dBm bis 500 MHz	
	4.14	Leistungsmessung in 50 Ohm	
	4.15	Leistungsmessung durch Spannungsmessung an 50 Ohm	
	4.16	Thermischer Leistungsmesser	

	4.17	Nanowatt und Mikrowatt messen	. 108
	4.18	Mikrowatt und Milliwatt messen	. 111
	4.19	Leistungsanzeige mit LEDs	. 112
	4.20	Leistungsmesser für 1 kW	. 113
	4.21	Leistungsmesser mit Optokoppler	. 114
	4.22	HF-Leistungsanzeige durch Kompensationsverfahren	. 114
	4.23	Wattmeter für kleine Sender	. 115
	4.24	Einfaches linear anzeigendes HF-Wattmeter	. 117
	4.25	Laser-Leistungsmesser	. 118
5	Mess	ung von Frequenzen	. 120
	5.1	Einfacher 1-GHz-Zähler	
	5.2	Alternatives Frequenzmessverfahren	. 121
	5.3	Mini-Zähler mit Offset	. 122
	5.4	Frequenzzähler bis 200 MHz	. 123
	5.5	2,5-GHz-Zähler	. 124
	5.6	Drei-Digit-Zähler	. 126
	5.7	Messung einer Frequenzdifferenz	. 127
	5.8	Frequenzmessung mit Frequenz-Spannungs-Wandler-IC	. 128
	5.9	Kostengünstiger 2,8-GHz-Prescaler	
	5.10	Einfacher zweistelliger Zähler	. 129
	5.11	50-MHz-Zähler	
	5.12	Zählerschaltung mit Zusatzfunktionen	
	5.13	Sechsstelliger 6-MHz-Zähler	. 131
	5.14	Zwei-Dekaden-Teiler für Frequenzmesser	
	5.15	Über Tastenfeld programmierbarer Teiler	
	5.16	Digital programmierbarer Teiler	
	5.17	Achtstelliger Zähler mit drei ICs	
	5.18	Zeitbasis für 1,2-GHz-Zähler	
	5.19	Dipper mit Stromspar-Oszillator	
	5.20	Akustisch signalisierendes Dipmeter	
	5.21	Ein VHF-Dipper	
	5.22	Dipmeter mit fünf Transistoren	
	5.23	Vierstellige Zählerschaltung	
	5.24	Dipper mit Modulationszusatz	
	5.25	Frequenzvergleicher	. 147
6		ung von Impedanzen	
		merkungen	
	6.1	Universelle Impedanzmesshriicke	150

	6.2	Einfache Impedanzmessung	. 151
	6.3	Impedanzmessbrücke für 230 MHz	. 153
	6.4	Antennen-Messbrücke	. 153
	6.5	Impedanz-Messbox	. 154
	6.6	Aktive Antennen-Messbrücke	. 155
	6.7	Antennen-Netzwerk-Analyzer	. 156
	6.8	Messanordnung für Impedanzen	. 158
7	Mess	ung weiterer elektrischer Größen	. 160
	7.1	Messung des Innenwiderstands einer Batterie	. 160
	7.2	Messung des Stroms eines Quarzes	. 162
	7.3	Messung des echten Effektivwerts eines Stroms	. 162
	7.4	Einfacher Phasenmesser für Frequenzen bis 10 MHz	. 164
	7.5	Crest-Faktor-Bestimmung im Gigahertzbereich	. 166
	7.6	Verstärkungs- und Phasenmessung	. 167
	7.7	Messung des Reflexionskoeffizienten	. 167
	7.8	Audio-Klirrfaktormesser	
	7.9	Reflexionsfaktor-Messbrücke bis 1 GHz	. 171
	7.10	Ermittlung der Center-Frequenz bei FM	. 171
	7.11	Messung sehr kleiner Kapazitäten	. 172
	7.12	Messung des Verlustwiderstands von Elkos	. 172
	7.13	Messung großer Kapazitäten	. 174
	7.14	Bestimmung von Induktivitäten	. 176
	7.15	Hochohmiges Rail-to-Rail-Messsystem	. 176
	7.16	230-V-Phasenwinkelmessung	. 178
	7.17	LC-Messgerät	
	7.18	Messbrücke für kleine Kapazitäten	. 180
8	Mess	ung nichtelektrischer Größen	
	8.1	Einfache Messanordnung für die Batterielebensdauer	. 182
	8.2	Betriebsmöglichkeiten für Widerstands-Temperatursensoren	. 183
	8.3	Präzise Temperaturmessung mit Mikroprozessor	. 184
	8.4	Temperaturmessung im Bereich –200 bis 600 °C	. 187
	8.5	Luftstrommessung mit Mikrocontroller	. 187
	8.6	Temperaturmessung mit Widerstandssensor und A/D-Wandler .	
	8.7	Temperaturmessung mit Diodenstrecken	. 192
	8.8	Brückenmessschaltung mit einfacher Versorgung	. 196
	8.9	Programmierbare Lichtstärkemessung	. 198
	8.10	Programmierbare Druckmessung	. 199
	8.11	Programmierbare Temperaturmessung mit PTC	. 200

8.12	Programmierbare Temperaturmessung mit NTC	
8.13	Programmierbare Temperaturmessung mit Halbleitersensor	202
8.14	Programmierbare Lichtstärkemessung	205
8.15	Driftarme Lichtmessschaltung	
8.16	Temperatur-Fernmessung mit Quarz und PIC	207
8.17	Messung des Sauerstoffgehalts	207
8.18	Thermometer mit Analog- und Digitalausgang	209
8.19	Verstärker für piezoelektrischen Wandler	210
8.20	Einfache Temperatur-Messschaltung	211
8.21	Lichtmessung in weitem Bereich	212
8.22	Temperaturmessung mit Cold-Junction-Kompensation	212
8.23	Multikanal-Temperaturmessung	213
8.24	Temperatur-Strom-Wandler für Fernmessung	214
8.25	Temperaturmessung über 420-mA-Loop	214
8.26	Beschleunigungsmesser mit ADXL05	214
8.27	Neigungsmesser mit Frequenzausgang	220
8.28	Messschaltung 0500 °C mit Cold-Junction Compensation	220
8.29	Drehzahlmessung mit magnetoresistivem Sensor	220
8.30	Dreidimensionale Magnetfeld-Erfassung	225
8.31	Druckmessung mit A/D-Wandler	225
8.32	Temperaturmessung mit A/D-Wandler	225
8.33	Einfache und genaue Temperatur-Fernmessung	225
8.34	Einfache und genaue Temperatur-Messschaltung	229
8.35	Luftfeuchtigkeits-Messung	230
8.36	Temperaturmessung mit UTI	230
8.37	UTI mit Widerstands-Messbrücke	231
8.38	UTI mit potentiometrischen Gebern	231
8.39	Kapazitätsmessung mit dem UTI	231
8.40	Mehrkanal-Messsystem mit UTIs	237
8.41	Lichtleitfaser-Messkopf	237
8.42	Tachometer mit Bargraph-Anzeige	240
8.43	Messung der Batterie-Lebensdauer	241
8.44	Luftfeuchtigkeits-Sensor ohne Batterie	241
8.45	TTL-Signal informiert über Luftfeuchtigkeit und Temperatur	
8.46	Umschaltendes Anemometer	244
8.47	Piezoelektrischer Beschleunigungsmesser	245
8.48	Druckmesser mit Digitalanzeige	245
8.49	Simpler Tastverhältnis-Messer	248
8.50	Drehzahl- und Drehrichtungsanzeige	248
8.51	Pulshreiten-Messgerät	249

	8.52	Differenzlicht-Detektor	250
	8.53	Hochauflösender Drehzahlmesser	251
	8.54	Höhenmessgerät mit LC-Panelmeter	253
9	Schal	tungen für Messverstärker	
	9.1	Instrumentationsverstärker mit Operationsverstärker-ICs	254
	9.2	Hohe Spannung und Last für chopperstabilisierte Operations-	
		verstärker	
	9.3	Rauscharmer und temperaturstabiler Messverstärker	
	9.4	Breitbandiger chopperstabilisierter FET-Verstärker	
	9.5	Empfindlicher und stabiler Transimpedanzverstärker	
	9.6	Instrumentationsverstärker für hohe Frequenzen	
	9.7	Laststromverdopplung mit Dual-Operationsverstärker	
	9.8	Einfachst-Impedanzwandler mit Operationsverstärker	
	9.9	Spannungsgesteuerter Messverstärker	
	9.10	Differenzverstärker mit einfacher Betriebsspannung	
	9.11	Chopper-Verstärker mit sehr geringem Stromverbrauch	
	9.12	Impedanzwandler mit sehr hochohmigem Eingang	
	9.13	Rauscharmer Messverstärker	
	9.14	High-Performance-Instrumentationsverstärker	
	9.15	Instrumentationsverstärker mit Spannungsfolger-ICs	
	9.16	Instrumentationsverstärker mit einfach einstellbarer Verstärkung	
	9.17	Einfacher Instrumentationsverstärker	
	9.18	Invertierender Verstärker mit hochohmigem Eingang	
	9.19	Elektronisch schaltbare Verstärkung	
	9.20	Instrumentationsverstärker mit zwei Operationsverstärkern	
	9.21	Digital programmierbarer Präzisionsverstärker	
	9.22	Micropower-Instrumentationsverstärker	
	9.23	Messverstärker mit Opto-Isolation	
	9.24	Differenzausgang für Instrumentationsverstärker	
	9.25	Präzise 20-dB-Verstärker ohne externe Komponenten	
	9.26	$In strumentations verst\"{a}rker\ mit\ einem\ Operations verst\"{a}rker\$	
	9.27	Einfacher breitbandiger Messverstärker	285
	9.28	Instrumentationsverstärker aus Stromquelle und Operationsver-	
		stärker	
	9.29	Differenzverstärker mit digitalen Potentiometern	
	9.30	Operationsverstärker verarbeitet große Messsignale	290
	9.31	Instrumentationsverstärker mit hoher Eingangsimpedanz und	
		geringer Drift	
	9.32	Rauscharmer Verstärker zur Messung des Phasenrauschens	292

	9.33	Digital einstellbarer Messverstärker	292
	9.34	Auto-Zero-Breitbandverstärker	
	9.35	Verstärker für 40 dB/100 MHz	294
	9.36	Verstärker für 20 dB/100 MHz	297
	9.37	Instrumentationsverstärker mit aktivem Filter	297
	9.38	ECG-Frontend mit einfacher Versorgung	299
	9.39	Instrumentationsverstärker mit uni- und bipolarem Ausgang	300
	9.40	Einfachst-Verstärker mit Verstärkungsfaktor 3	301
	9.41	Programmierbarer Chopper-Verstärker	302
	9.42	Zwei-IC-Verstärker ohne externe Beschaltung	303
	9.43	Präziser Instrumentationsverstärker	303
	9.44	Präzisionsverstärker mit Booster	304
	9.45	Schneller Präzisionsverstärker	304
	9.46	Einfache Messverstärker mit Mikro-Power-IC	306
	9.47	Instrumentationsverstärker mit Dual-Operationsverstärker	307
	9.48	Sehr verzerrungsarmer Verstärker	
	9.49	Breitband-FET-Verstärker	309
10	Schal	tungen für Filter	310
	10.1	Gute Filter – ganz einfach	310
	10.2	Qualifiziertes Antialiasing-Filter	311
	10.3	Filter mit Fixed-Gain-Operationsverstärkern	313
	10.4	Kerbfilter mit einstellbarer Güte	315
	10.5	Einfaches Kerbfilter	315
	10.6	Tiefpassfilter mit minimalem Aufwand	317
	10.7	Bandpass mit hoher Güte	317
	10.8	Einfaches Notchfilter mit hoher Güte	319
	10.9	Fliege-Notchfilter	320
	10.10	Einfaches 20-kHz-Filter dritter Ordnung	321
	10.11	Aktives 20-MHz-Filter	322
11	Schal	tungen für Wandler	323
	11.1	Spannungs-Frequenz-Konverter für 1 Hz bis 100 MHz	323
	11.2	Einfacher Temperatur-Pulsweiten-Wandler	326
	11.3	Frequenz-Spannungs-Wandler mit VCO-IC	326
	11.4	Stromarmer Spannungs-Frequenz-Wandler	332
	11.5	Hochlinearer Spannungs-Frequenz-Wandler	332
	11.6	Einfacher Spannungs-Pulsweiten-Wandler	332
	11.7	D/A-Wandler mit 010-V-Ausgang	335
	11.8	Low-Cost-Spannungs-Frequenz-Wandler	336

	11.9	Frequenz-Spannungs-Wandler 10 Hz bis 10 kHz	. 337
	11.10	Spannungs-Frequenz-Wandler für schwankende Betriebs-	
		spannung	
	11.11	Spannungs-Frequenz-Wandler für stabile Betriebsspannung .	. 339
	11.12	Spannungs-Frequenz-Wandler für positive und negative	
		Spannungen	
	11.13	Pulsbreiten-Spannungs-Wandler	
	11.14	CMOS-Pegel für HF-Signale	
	11.15	A/D-Wandler mit LC-Display	
	11.16	Ansteuerschaltung für Fluoreszenz-Display	
	11.17	3 ,	
	11.18	Einfache Analog-Digital-Wandlerschaltungen	. 346
12	Schaltı	ungen für Generatoren	
	12.1	Breitbandiger Rauschgenerator	
	12.2	Preiswerter Generator für weißes Rauschen	
	12.3	Quarz formt reines Sinussignal	. 354
	12.4	Vierfach-Quadratursignal-Generator	
	12.5	Rechteck-Sinus-Wandlung mit SC-Filter	
	12.6	Einfacher, aber stabiler Rechteck-/Dreieckgenerator	. 357
	12.7	Rechteck- und Sägezahngenerator mit hoher Linearität	
	12.8	Negative-Resistance-Oszillator	. 359
	12.9	Hochstabiler 100-kHz-Oszillator	
	12.10	Hochwertiger einstellbarer Sinusgenerator	. 361
	12.11	Spannungsgesteuerter Sinusoszillator für 1 Hz bis 30 kHz	. 364
	12.12	Quarzoszillator mit hoher Leistung	. 364
	12.13	Impulsgenerator mit Triggerausgang	. 367
	12.14	Low-Power-Oszillator mit weitem Betriebsspannungsbereich	369
	12.15	1-kHz-Sinusgenerator mit Mikrocontroller	
	12.16	Einfacher und stabiler Tieffrequenz-Sinus-/Cosinusoszillator	
	12.17	NF-Sinus-/Cosinusgenerator	
	12.18	NF-Wienbrückenoszillator mit FET-Stabilisator	. 373
	12.19	Vielseitiger Dreieck-/Rechteckgenerator	
	12.20	Micropower-Wienbrücken-Generator	
	12.21	Einfacher Rechteckgenerator	. 376
	12.22	Wienbrücken-Generator mit einfachem Potentiometer	. 377
	12.23	Präziser Rampengenerator	
	12.24	Sinusgenerator mit quarzgenauer Frequenz	
	12.25	Drei-Dekaden-VFO	. 380
	12.26	Präziser HF-Generator	381

	12.27	Erzeugung von HF-Rechtecksignalen	. 382
	12.28	Frei einstellbarer Sägezahngenerator	. 382
	12.29	Mini-Audio-Oszillator	
	12.30	Generator für rosa Rauschen	. 386
	12.31	Mikrofonschaltungs-Testoszillator	. 386
	12.32	Einfacher Phasenschieber-Oszillator	. 386
	12.33	Sinusoszillator mit entkoppelten RC-Gliedern	. 389
	12.34	Quadraturoszillator mit zwei Operationsverstärkern	. 389
	12.35	Bubba-Oszillator	. 390
	12.36	Impulsgenerator mit weitem Frequenzbereich	. 391
	12.37	Audio-Rauschgenerator	. 391
	12.38	Programmierbarer Sinusgenerator	
	12.39	Impuls- und Pausenzeit getrennt einstellbar	. 393
	12.40	Funktionsgenerator mit weitem Frequenzbereich	. 393
	12.41	Wienbrückenoszillator mit Diodenarray	. 396
	12.42	Funktions- und Sweeping-Generator	. 397
	12.43	Quarzoszillatoren mit ungepufferten Invertern	. 402
	12.44	High-Speed-Funktionsgenerator	. 403
	12.45	Random-Noise-Generator	. 403
	12.46	FM-Messsender	. 405
	12.47	Dreiton-Oszillator	. 405
13		e Schaltungen für die Messtechnik	
	13.1	Schaltungen mit S&H-Verstärker-ICs	
	13.2	Langlebige portable Referenzquelle	
	13.3	Schneller Spannungsfolger	
	13.4	Quellen für negative Referenzspannung	
	13.5	Präzisions-Stromquelle und -Stromsenke	
	13.6	Logarithmierer mit 100 dB Dynamikbereich	
	13.7	Schneller Logarithmierer	
	13.8	Anti-Logarithmierer	
	13.9	Mathematische Verarbeitung mit minimaler Drift	
	13.10	Multiplizierer/Dividierer	
	13.11	Schneller Integrierer	
	13.12	Schaltung eliminiert Gleichtaktspannung	
	13.13	Abgleichbarer Logarithmierer	
	13.14	Digitaler Nullabgleich von Präzisions-Operationsverstärkers .	
	13.15	Präzise Betragsbildung	
	13.16	Präziser Multiplizierer/Dividierer	
	13.17	Hochstabile Spannungsreferenz	425

13.18	Präzise duale Spannungsreferenz	. 428
13.19	Micropower-Referenzspannungsquelle für 1,23 V	. 429
13.20	Bilaterale Spannungs-Strom-Umsetzer	. 430
13.21	Instrumentationsverstärker als Operationsverstärker	. 431
13.22	Ansteuerschaltung für Differential-ADC	. 432
13.23	Programmierbare Stromquelle	. 432
13.24	Dämpfender aktiver Desymmetrierer	. 433
13.25	Vierquadranten-Multiplizierer	. 435
13.26	Schnelle S&H-Schaltung	
13.27	Stromquelle mit Schaltregler	
13.28	Spannungsreferenz mit Driftabgleich	. 437
13.29	Hochgenaue S&H-Schaltung	
13.30	Vollwellen-Gleichrichter ohne Dioden	. 439
13.31	Diodenloser Gleichrichter	
13.32	Lineare Gleichrichtung ohne Diode	. 441
13.33	Breitbandiger Gleichrichter	
13.34	Leistungsfähiger Transistorprüfer	. 442
13.35	Präzise –10-V-Referenz	
13.36	Störsichere Datenübertragung	
13.37	Einfacher Frequenzmultiplizierer	
13.38	Frequenzmultiplizierer mit D/A-Wandler	
13.39	Messwertübertragung auf der Stromversorgungs-Leitung	. 448
13.40	Spannungsgesteuerte Konstantstromquelle	. 448
13.41	Stabile exponentielle Stromquelle	. 450
13.42	Qualifizierte 1-A-Injektorschaltung	. 451
13.43	Einfacher breitbandiger Frequenzverdoppler	
13.44	Bargraph-Anzeige mit PIC	. 451
13.45	Konstantleistungs-Quelle	
13.46	Referenz-IC mit Stromverstärker	
13.47	Verbesserte Stromquelle	. 457
13.48	Low-Cost-Dividierer	
13.49	9-Bit-Digital-Analog-Konverter	. 459
13.50	Einfaches S&H-System	
13.51	Symmetrische Messwert-Übertragung	. 461
13.52	Stromsenke mit Fehlerkorrektur	
13.53	Fünfstelliger Ereigniszähler mit Voreinstellung	
13.54	Kaskadischer Abwärts-Ereigniszähler	
13.55	Ereigniszähler zählt auf- oder abwärts	
13.56	Zweifach-Fernanzeige	
13.57	Digitale Einstellung des Übertragungsfaktors	. 466
13.58	LFD-Zeile am Mikrocontroller	. 466

	13.59	Kompakter Oszilloskoptester	
	13.60	Logikpegel-Tester	. 471
14		schaltungen für Messgeräte	
	14.1	Induktivitätsmess-Vorsatz für Multimeter	
	14.2	Vorteiler und -verstärker für Frequenzmesser	
	14.3	Präziser Audio-Spitzenspannungs-Messvorsatz	
	14.4	Millivoltmeter-Adapter für Multimeter	
	14.5	Schaltung zur Verbesserung der Klirrfaktor-Messung	
	14.6	Messschaltung für die Settling Time	
	14.7	Goniometer – der bessere Phasenmesser	
	14.8	HF-Tastkopf mit Log Amp/Detector	
	14.9	Phasenwinkel bis 360 Grad messen	. 481
	14.10	Einfacher Kabelbruchdetektor	. 483
	14.11	Differenzielle Frequenzmessung	. 484
	14.12	Phasenmesser	. 485
	14.13	Vorteiler 0,13,5 GHz	. 485
	14.14	Vorverstärker und Vorteiler	. 487
	14.15	Einfache Messung der Settling Time	. 487
	14.16	Einfache aktive Tastkopfschaltungen	. 489
	14.17	Audiofilter-Wobbler	. 491
	14.18	Vielseitiger NF-Wobbler	. 492
	14.19	Low-Cost-HF-Wobbler	. 493
	14.20	Bargraph-Anzeige für Oszilloskop	. 494
	14.21	Tastkopf für Frequenzzähler	
	14.22	Universeller aktiver Tastkopf	
	14.23	Modulationsmonitor-Zusatz	. 497
	14.24	LC-Generator als Frequenzzähler-Zusatz	. 499
	14.25	Tester für Leistungstransistoren	. 499
	14.26	Einfaches Milliohmmeter	. 501
	14.27	Einfacher Spectrum Analyzer	. 502
	14.28	HF-Wobbler mit großem Frequenzbereich	. 503
	14.29	Ein VHF-Wobbler	. 505
	14.30	Kapazitäts-/Induktivitäts-Messvorsatz	. 506
	14.31	Einfache Magnetfeldmessung	
	14.32	Instrumentationsverstärker als Oszilloskop-Vorsatz	
	14.33	Einfache Induktivitätsmessung	
	14.34	Kennlinienschreiber für FETs	
	14.35	Vorteiler zur Frequenzmessung mit Multimeter	
	14.36	Achtkanal-Chopper	
	14.37	Vorverstärker für Zähler	

15	Schaltu	ıngen für die Prüftechnik	515
	15.1	Einfacher Negative-Resistance-Oszillator	515
	15.2	Leistungsstarker Audio-Prüfgenerator	516
	15.3	Einstellbarer Batteriesimulator	517
	15.4	Einfacher Feldstärke-Indikator	518
	15.5	Testoszillator für HF bis UHF	519
	15.6	Batterie-Checker	
	15.7	Einfacher Dreibereichs-KW-Prüfgenerator	522
	15.8	Einfacher KW-Generator mit MC1648	
	15.9	Mehrbereichsgenerator mit MC1648	
	15.10	Stereo-Prüfsender mit SMD-IC	525
	15.11	Verlustfaktor-Vergleichsschaltung	526
	15.12	Testoszillator zur Induktivitätsermittlung	527
	15.13	Magnetfeld-Detektor	527
	15.14	Mehrdraht-Kabeltester	528
	15.15	CMOS-Logiktester	528
	15.16	Transistorprüfer und Testgenerator	
	15.17	Praktisches Kabelprüfgerät	531
	15.18	Tester für 6-V-NiCd/MiMH-Akkus	
	15.19	Ladestromindikator	532
	15.20	Batteriespannungs-Tester	534
	15.21	Aufspürgeräte für 2,4-GHz-Quellen	534
	15.22	Überwachung optischer Signale	536
	15.23	Logikpegel-Test-Set	536
	15.24	Logikanalysator	
	15.25	Einfacher NF-Frequenzanalysator	
	15.26	Tönender Durchgangsprüfer	
	15.27	Einfacher High/Low-Tester	540
	15.28	Schonender Batterietester	
	15.29	Akustischer Widerstandstester	541
	15.30	Breitbandiger Testgenerator	
	15.31	RFID-Sendefelddetektor	
	15.32	Leitungsfinder	
	15.33	Magnetpol-Indikator	
	15.34	Nulldurchgangs-Detektor	
	15.35	Pegel- und Impulsrichtungs-Indikator	
	15.36	Infrarot-Detektor	
	15.37	Dreistufiger Spannungsdetektor	548
Stic	hwortve	erzeichnis	549

1 Messung elektrischer Gleichgrößen

1.1 Gleichspannungsmessung mit dem ICL7136

Der ICL7106 war der erste IC, welcher alle aktiven Komponenten zur qualifizierten Gleichspannungsmessung mit digitaler Anzeige auf einem LC-Display enthielt. Neben dem LCD waren nur vier Widerstände, vier Kondensatoren sowie ein Eingangs-RC-Filter als Außenbeschaltung erforderlich.

Der ICL7136 ist die Ultra-Low-Power-Version des ICL7106. Nach *Abb. 1.1* ist auch die Außenbeschaltung identisch. Sie gilt für maximal 1999 mV Eingangsspannung. Für 1,999 V müssen folgende Bauelementeänderungen erfolgen: R1 150 kOhm,

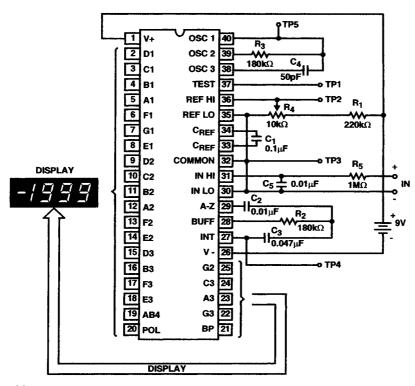
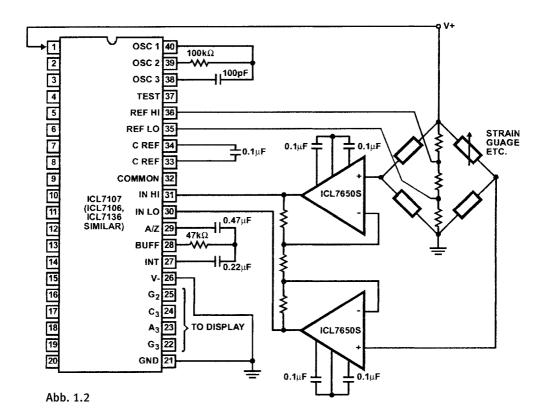



Abb. 1.1

Intersil Application Note 023

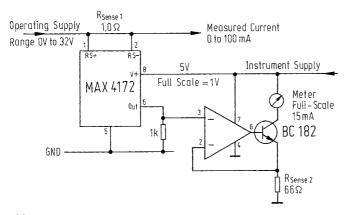

R2 1,8 MOhm, R4 100 kOhm, C2 22 nF. Außerdem sollte der Dezimalpunkt gesetzt werden.

Abb. 1.2 zeigt eine Anwendung der Bausteine einschließlich des ICL7136 im Zusammenwirken mit einer Messbrücke. Der Eingang ist massebezogen, somit ist ein direkter Anschluss an die Brücke nicht möglich. Zwei Operationsverstärker bilden daher einen Differenzverstärker; auch ein einfacher Differenzverstärker (mit unsymmetrischem Ausgang) scheint möglich, wenn die Brücke genügend niederohmig ist. Man sollte natürlich auch dabei einen Operationsverstärker mit geringer Drift bevorzugen.

1.2 Leistungsarme Strommessung mit Zeigerinstrument

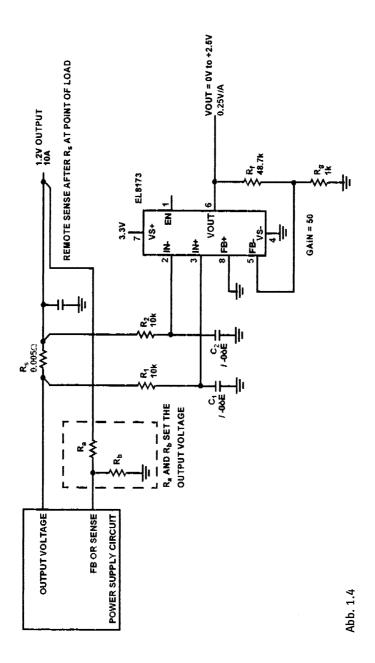
Schaltet man ein Zeigerinstrument direkt in eine Leitung, um den darin fließenden Strom zu messen, hat das Nachteile. Zunächst verursacht der Innenwiderstand des Instruments einen gewissen Spannungsabfall. Dann muss das Instrument eventuell gegen Überlastung geschützt werden, üblicherweise mit zwei antiparallelen Si-Leistungsdioden. Schließlich kann eine Leitungsumverlegung erforderlich sein, denn das Instrument muss in der Regel an einem bestimmten Ort zwecks guter Ablesbarkeit angeordnet werden.

Hat man eine Hilfsspannung von z. B. 5 V zur Verfügung, kann man diese Probleme mit der Schaltung nach *Abb. 1.3* umgehen. Der in die Leitung einzufügende Widerstand ist mit 1 Ohm recht klein. Ein Strom von 100 mV verursacht daran einen Spannungsabfall von 100 mV. Der Differenzeingang des MAX4172 erhält den Spannungsabfall und wandelt ihn in einen Strom um. Bei 100 mV zwischen den Pins 1 und 2 fließt 1 mA aus Pin 6. Das bedeutet 1 V an 1 kOhm. Die Eingangsspannung wurde verzehnfacht. Ein Einstellwiderstand an dieser Stelle erlaubt den Abgleich der Schaltung. Der einfache Spannungs-Strom-Wandler mit dem Operationsverstärker MAX495 erzeugt im Kollektorkreis des Transistors bei 1 V Eingangsspannung einen Strom von etwa 15 mA (1 V/66 Ohm). Man sollte besser ein Instrument mit 10 oder 100 mA Endausschlag benutzen. Der Widerstand muss dann 100 Ohm bzw. 10 Ohm haben.

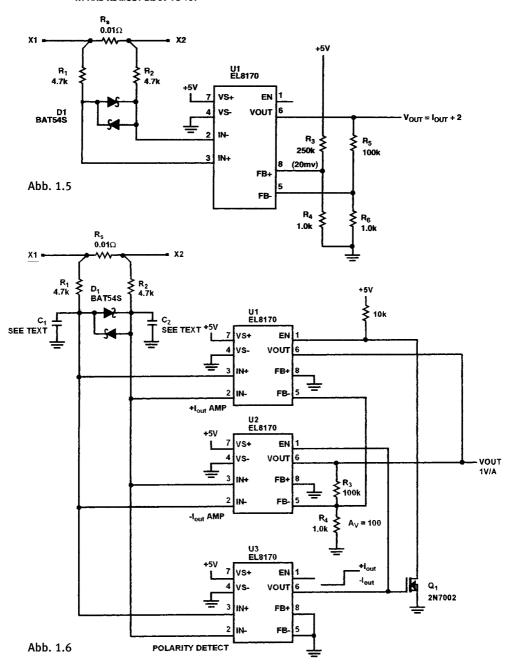
Maxim Application Note 3536

Abb. 1.3

1.3 Strommessung mit Instrumentationsverstärkern


Ein Instrumentationsverstärker zeichnet sich durch einen hochohmigen Differenzeingang mit hoher Gleichtaktunterdrückung aus. Somit sind qualifizierte, nicht massebezogene Spannungsmessungen möglich. Der typische Anwendungsfall ist die indirekte Strommessung durch Messung des Spannungsabfalls an einem möglichst niedrigen Widerstand in der Stromleitung.

In *Abb. 1.4* beträgt dieser Widerstand nur 5 Milliohm. Der maximale Strom von 10 A verursacht daran einen Spannungsabfall von 50 mV. Dennoch ist es für den Stabilisierungsschaltkreis wichtig, dass die Vergleichsspannung direkt an der Last abgenommen wird. Die Eingänge des Instrumentationsverstärkers sind mit Widerständen von 10 kOhm geschützt. Gleichzeitig ergeben sich mit den Kapazitäten Tiefpassfilter. Die Kondensatoren sind für wenige Hertz Grenzfrequenz zu bemessen. Die Verstärkung von 50 wird mit den Widerständen an Pin 5 bestimmt. Das ergibt eine Ausgangsspannungsänderung von 250 mV pro Ampere.


In *Abb. 1.5* beträgt der Shuntwiderstand 10 Milliohm, und der IC-Eingang wird durch Widerstände und antiparallel geschaltete Dioden geschützt. Dies deshalb, weil Strom in beide Richtungen fließen und erfasst werden kann. Die Gegenkopplungsbeschaltung muss daher beide Feedback-Pins betreffen. Beim Strom null soll bereits eine Ausgangsspannung von 2 V vorliegen. Das bedeutet 20 mV Versatz an Pin 8 gegenüber Pin 5. Denn die Widerstände sind für eine Verstärkung von 100 ausgelegt. Somit bedeuten –2 A 0 V Ausgangsspannung und 2 A 4 V Ausgangsspannung. Durch die einfache Versorgung kann diese nicht negativ werden. Mit der Schaltung kann man Lade- und Entladeströme von Akkus messen.

In *Abb. 1.6* ist eine weitere interessante Anwendung zu sehen. Es kommen drei moderne Instrumentationsverstärker zum Einsatz. Dieser Aufwand erlaubt die Messung von positiven und negativen Strömen mit Anzeige der Polarität. Auch hier ist der Shuntwiderstand sehr klein. Bei einem Ampere entsteht ein Spannungsabfall von 10 mV. Der obere Verstärker misst positive, der mittlere negative Ströme. Die Eingänge liegen parallel, die Pins sind aber vertauscht. Der untere Verstärker wertet die Polarität aus. Die Kondensatoren bilden mit den Widerständen Tiefpassfilter und sind nur bei Anwendungen erforderlich, wo eine Filterwirkung erzielt werden muss (z. B. Überwachung von Pulsbreitensteuerungen). Die Verstärkung beträgt 100, somit gilt am Ausgang 1 V/A.

In *Abb. 1.7* ist der Einsatz einer bidirektionalen Strommessschaltung in einer Motorsteuer-Brückenschaltung gezeigt.

LOAD CURRENT = 2A, MAX X1 AND X2 MUST BE 0V TO +5V

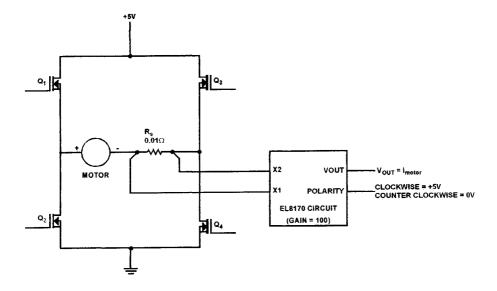


Abb. 1.7
Intersil Application Note 1298

1.4 Interface zur Gleichspannungsmessung mit dem PC

Die 25-polige Sub-D-Buchse zum Druckeranschluss ist auch heute noch an vielen PCs vorhanden. Stattet man einen solchen PC mit der Schaltung nach *Abb. 1.8* aus, kann man vier Gleichspannungen erfassen. Für hohe Werte kann man an den Eingängen die angedeuteten Spannungsteiler anordnen. Die Kondensatoren bewirken zusammen mit den Längswiderständen eine Signalfilterung. Der MAX4164 enthält vier Operationsverstärker, die jeweils als Spannungsfolger geschaltet sind. Der MAX1248 ist ein 10-bit-A/D-Wandler.

Die Betriebsspannung erhält das Interface von der Sub-D-Buchse. Sie wird in der Regel 5 V betragen. Notebooks bieten oft nur etwa 3 V – auch dann arbeitet die Schaltung einwandfrei. Die Stromaufnahme ist hier mit etwa 1 mA sehr gering. Liegt die Quellimpedanz unter 3 kOhm, können die Operationsverstärker entfallen. Andernfalls wird der Vierfach-Operationsverstärker vorgesehen. Er arbeitet auch noch mit 2,7 V, hat Rail-to-Rail-Eingänge und verbraucht nur etwa 100 μA .

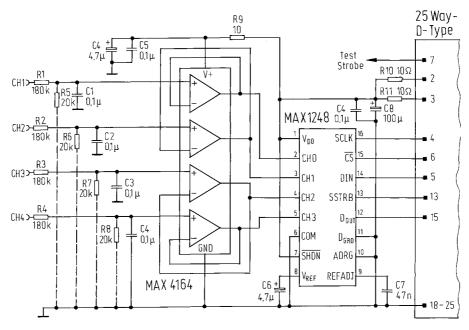


Abb. 1.8

Maxim Application Note 1988

1.5 A/D-Wandler misst Spannungen bis 1000 V

Die Analog-Digital-Wandler CD5521/23, CS5522/24/28 und CS5525/26 besitzen einen chopperstabilisierten programmierbaren Instrumentationsverstärker mit maximal 300 pA Eingangsstrom. Eine Ladungspumpenschaltung ist ebenfalls integriert, um eine negative Versorgungsspannung zu erzeugen. Das macht die Messung massebezogener Spannungen möglich (*Abb. 1.9*). Der Instrumentationsverstärker (PGIA, programmable gain instrumentation amplifier) hat die Low-Level-Eingangsbereiche: +/-25, +/-55 und +/-100 mV. Der Eingangsstrom ist von Sampling-Kondensator und Sampling-Frequenz abhängig. Hält man diese Größen klein, ist auch er gering. Dann ist das Vorschalten eines hochohmigen Spannungsteilers bei geringem Fehler möglich. So kann ein Eingangsspannungsbereich von +/-10 V gemäß *Abb. 1.10* bei nur 0,03 % Fehler erreicht werden. Senkt man den Widerstand gegen Masse, sinkt der Fehler entsprechend. In *Abb. 1.11* wurde der Widerstand auf 1 kOhm vermindert. Mit fünf Widerständen 2 MOhm können nun Spannungen bis zu +/-1000 V gemessen werden, wobei über jedem Widerstand maximal 200 V abfallen.

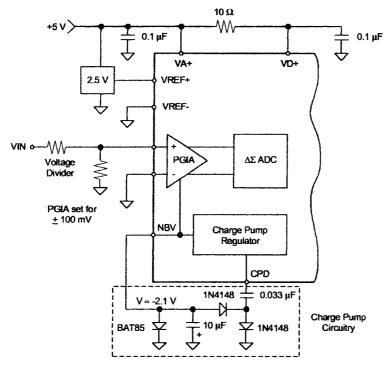


Abb. 1.9

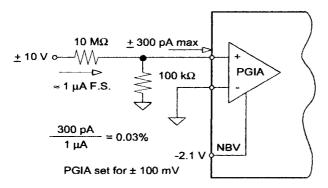


Abb. 1.10

Mit 32,768 kHz Eingangstaktfrequenz ergibt sich eine niedrige Chopperfrequenz von 256 Hz. Das bedeutet nur etwa 100 pA Eingangsstrom bei Zimmertemperatur und maximal 300 pA im industriellen Standardtemperaturbereich.